CSE544: Principles of Database Systems

Query Optimization and Database Statistics
Announcements

• Homework 2 is posted, due May 6
 – SimpleDB
 – Understand existing code PLUS write more code
 – Start early!!

• Project M2 (Proposal) due April 26
 – Define clear, limited goals! Don’t try too much

• Review 4 (Anatomy): due April 29
Outline

• Chapter 15 in the textbook

• Paper on selectivity of conjuncts
Query Optimization

• Why?
 – Because of data independence

• What?
 – Search among many equivalent logical/physical plans, choose the cheapest

• Who?
 – System R, 1979: super-influential, laid out most of the key concepts; see book, 15.6
 – Today’s optimizers are much more advanced
Query Optimization

Three major components:

1. Search space
2. Plan enumeration algorithms
3. Cardinality and cost estimation
1. Search Space

- This is the set of all alternative plans that are considered by the optimizer.

- Defined by:
 - The set of *algebraic laws*
 - The *set of plans* used by the optimizer.
Relational Algebra Laws: Joins

Commutativity: \(R \bowtie S = S \bowtie R \)

Associativity: \(R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T \)

Distributivity: \(R \bowtie (S \cup T) = (R \bowtie S) \cup (R \bowtie T) \)

Outer joins get more complicated
Relational Algebra Laws: Selections

\[R(A, B, C, D), S(E, F, G) \]

\[\sigma_{F=3} (R \bowtie_{D=E} S) = ? \]

\[\sigma_{A=5 \text{ AND } G=9} (R \bowtie_{D=E} S) = ? \]
Relational Algebra Laws: Selections

\[R(A, B, C, D), S(E, F, G) \]

\[
\sigma_{F=3} (R \bowtie_{D=E} S) = R \bowtie_{D=E} (\sigma_{F=3}(S))
\]

\[
\sigma_{A=5 \text{ AND } G=9} (R \bowtie_{D=E} S) = \sigma_{A=5}(R) \bowtie_{D=E} \sigma_{G=9}(S)
\]
Group-by and Join

\[\gamma_{A, \text{sum}(D)}(R(A, B) \bowtie_{B=C} S(C, D)) = ? \]
Group-by and Join

\[R(A, B), \ S(C,D) \]

\[
\gamma_A, \text{sum}(D)(R(A,B) \bowtie_{B=C} S(C,D)) = \\
\gamma_A, \text{sum}(D)(R(A,B) \bowtie_{B=C} (\gamma_C, \text{sum}(D)S(C,D)))
\]

These are very powerful laws. They were introduced only in the 90’s.
Laws Involving Constraints

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

\[\Pi_{\text{pid, price}} (\text{Product} \bowtie_{\text{cid}=\text{cid}} \text{Company}) = ? \]
Laws Involving Constraints

Need a second constraint for this law to hold. Which?
Why such queries occur

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

CREATE VIEW CheapProductCompany
SELECT *
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < 100

SELECT pname, price
FROM CheapProductCompany

SELECT pname, price
FROM Product
WHERE price < 100
Law of Semijoins

• **Input:** \(R(A_1, \ldots, A_n), \ S(B_1, \ldots, B_m)\)
• **Output:** \(T(A_1, \ldots, A_n)\)
• **Semjoin** is: \(R \bowtie S = \Pi_{A_1, \ldots, A_n} (R \Join S)\)

• The law of semijoins is:

\[
R \Join S = (R \Join S) \Join S
\]
Laws with Semijoins

• Used in parallel/distributed databases

• Often combined with Bloom Filters

• Read pp. 747 in the textbook
Left-Deep Plans and Bushy Plans

System R considered only left deep plans, and so do some optimizers today
Query Optimization

Three major components:

1. Search space

2. Algorithm for enumerating query plans

3. Cardinality and cost estimation
Enumerating Query Plans

• **Dynamic programming**
 – Pioneered by System R for computing optimal join order, used today by all advanced optimizers
 – See book (won’t discuss in class)

• **Search space pruning**
 – Enumerate partial plans, drop unpromising partial plans
 – Bottom-up v.s. top-down plans

• **Access path selection**
 – Refers to the plan for accessing a single table
Complete Plans

R(A,B) S(B,C) T(C,D)

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

If the algorithm enumerates complete plans, then it is difficult to prune out unpromising sets of plans.
Bottom-up Partial Plans

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

If the algorithm enumerates partial bottom-up plans, then pruning can be done more efficiently
Top-down Partial Plans

R(A,B)
S(B,C)
T(C,D)

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

Same here.

SELECT *
FROM R, S
WHERE R.B=S.B and R.A < 40

SELECT *
FROM R
WHERE R.A < 40
Access Path Selection

Supplier(sid, sname, scategory, scity, sstate)

Clustered index on scity
Unclustered index on (scategory, scity)

Access plan options:
• Table scan: cost = ?
• Index scan on scity: cost = ?
• Index scan on scategory, scity: cost = ?

\[\sigma_{\text{scategory}} = \text{‘organic’ } \land \text{ scity=‘Seattle’} \] (Supplier)

B(Supplier) = 10k
T(Supplier) = 1M
V(Supplier, city) = 1000
V(Supplier, scategory) = 100
Access Path Selection

Supplier(sid, sname, scategory, scity, sstate)

Clustered index on scity
Unclustered index on (scategory, scity)

Access plan options:

- Table scan: cost = 10k = 10k
- Index scan on scity: cost = 10k/1000 = 10
- Index scan on scategory, scity: cost = 1M/1000*100 = 10

$\sigma_{\text{scategory} = 'organic'$ \land \text{scity}='Seattle'}(\text{Supplier})$

B(Supplier) = 10k
T(Supplier) = 1M
V(Supplier, city) = 1000
V(Supplier, scategory) = 100
Query Optimization

Three major components:

1. Search space
2. Algorithm for enumerating query plans
3. Cardinality and cost estimation
3. Cardinality and Cost Estimation

• **Collect** statistical summaries of stored data

• **Estimate size** (=cardinality) in a bottom-up fashion
 – This is the most difficult part, and still inadequate in today’s query optimizers

• **Estimate cost** by using the estimated size
 – Hand-written formulas, similar to those we used for computing the cost of each physical operator
Statistics on Base Data

• Collected information for each relation
 – Number of tuples (cardinality)
 – Indexes, number of keys in the index
 – Number of physical pages, clustering info
 – Statistical information on attributes
 • Min value, max value, number distinct values
 • Histograms
 – Correlations between columns (hard)

• Collection approach: periodic, using sampling
Size Estimation Problem

\[
S = \text{SELECT} \ \text{list} \\
\text{FROM} \ \text{R1, …, Rn} \\
\text{WHERE} \ \text{cond}_1 \ \text{AND} \ \text{cond}_2 \ \text{AND} \ldots \ \text{AND} \ \text{cond}_k
\]

Given \(T(R1), T(R2), \ldots, T(Rn) \)
Estimate \(T(S) \)

How can we do this? Note: doesn’t have to be exact.
Size Estimation Problem

\[S = \text{SELECT list} \]
\[\text{FROM R1, \ldots, Rn} \]
\[\text{WHERE cond}_1 \text{AND cond}_2 \text{AND} \ldots \text{AND cond}_k \]

Remark: \(T(S) \leq T(R1) \times T(R2) \times \ldots \times T(Rn) \)
Selectivity Factor

• Each condition $cond$ reduces the size by some factor called *selectivity factor*

• Assuming independence, multiply the selectivity factors
Example

```
SELECT * 
FROM R, S, T 
WHERE R.B=S.B and S.C=T.C and R.A<40 
```

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3
Selectivity of S.C = T.C is 1/10
Selectivity of R.A < 40 is ½

What is the estimated size of the query output?
Rule of Thumb

• If selectivities are unknown, then: selectivity factor = 1/10
 [System R, 1979]
Using Data Statistics

• Condition is $A = c$ /* value selection on R */
 - Selectivity = $1/V(R,A)$

• Condition is $A < c$ /* range selection on R */
 - Selectivity = $(c - \text{Low}(R,A))/(\text{High}(R,A) - \text{Low}(R,A))T(R)$

• Condition is $A = B$ /* $R \bowtie_{A=B} S$ */
 - Selectivity = $1 / \max(V(R,A),V(S,A))$
 - (will explain next)
Assumptions

• **Containment of values**: if $V(R,A) \leq V(S,B)$, then the set of A values of R is included in the set of B values of S

 – Note: this indeed holds when A is a foreign key in R, and B is a key in S

• **Preservation of values**: for any other attribute C, $V(R \bowtie_{A=B} S, C) = V(R, C)$ (or $V(S, C)$)
Selectivity of $R \bowtie_{A=B} S$

Assume $V(R,A) \leq V(S,B)$

• Each tuple t in R joins with $T(S)/V(S,B)$ tuple(s) in S

• Hence $T(R \bowtie_{A=B} S) = T(R) \cdot T(S) / V(S,B)$

In general: $T(R \bowtie_{A=B} S) = T(R) \cdot T(S) / \max(V(R,A), V(S,B))$
Size Estimation for Join

Example:

- $T(R) = 10000$, $T(S) = 20000$
- $V(R,A) = 100$, $V(S,B) = 200$
- How large is $R \bowtie_{A=B} S$?
Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)
Histograms

Employee\((ssn, \text{name, age})\)

\[T(\text{Employee}) = 25000, \quad V(\text{Employee, age}) = 50 \]
\[\text{min}(\text{age}) = 19, \quad \text{max}(\text{age}) = 68 \]

\[\sigma_{\text{age}=48}(\text{Employee}) = ? \quad \sigma_{\text{age}>28 \text{ and age}<35}(\text{Employee}) = ? \]
Histograms

Employee(ssn, name, age)

$T(\text{Employee}) = 25000, \ V(\text{Employee, age}) = 50$
$\min(\text{age}) = 19, \ \max(\text{age}) = 68$

$\sigma_{\text{age}=48}(\text{Employee}) = ? \quad \sigma_{\text{age}>28 \ \text{and} \ \text{age}<35}(\text{Employee}) = ?$

Estimate = $25000 \div 50 = 500 \quad$ Estimate = $25000 \times 6 \div 50 = 3000$
Histograms

Employee(ssn, name, age)

\[T(\text{Employee}) = 25000, \quad V(\text{Employee, age}) = 50 \]
\[\min(\text{age}) = 19, \quad \max(\text{age}) = 68 \]

\[\sigma_{\text{age}=48}(\text{Employee}) = ? \]
\[\sigma_{\text{age}>28 \text{ and age}<35}(\text{Employee}) = ? \]

<table>
<thead>
<tr>
<th>Age</th>
<th>0..20</th>
<th>20..29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>> 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>200</td>
<td>800</td>
<td>5000</td>
<td>12000</td>
<td>6500</td>
<td>500</td>
</tr>
</tbody>
</table>
Histagrams

Employee(ssn, name, age)

T(Employee) = 25000, V(Employee, age) = 50
min(age) = 19, max(age) = 68

\[\sigma_{\text{age}=48}(\text{Employee}) = ? \quad \sigma_{\text{age}>28 \text{ and age}<35}(\text{Employee}) = ? \]

<table>
<thead>
<tr>
<th>Age:</th>
<th>0..20</th>
<th>20..29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>> 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>200</td>
<td>800</td>
<td>5000</td>
<td>12000</td>
<td>6500</td>
<td>500</td>
</tr>
</tbody>
</table>

Estimate = 1200

Estimate = 1*80 + 5*500 = 2580
Types of Histograms

• How should we determine the bucket boundaries in a histogram?
Types of Histograms

• How should we determine the bucket boundaries in a histogram?

• Eq-Width
• Eq-Depth
• Compressed
• V-Optimal histograms
Employee(ssn, name, age)

Histograms

Eq-width:

<table>
<thead>
<tr>
<th>Age:</th>
<th>0..20</th>
<th>20..29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>> 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>200</td>
<td>800</td>
<td>5000</td>
<td>12000</td>
<td>6500</td>
<td>500</td>
</tr>
</tbody>
</table>

Eq-depth:

<table>
<thead>
<tr>
<th>Age:</th>
<th>0..20</th>
<th>20..29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>> 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>1800</td>
<td>2000</td>
<td>2100</td>
<td>2200</td>
<td>1900</td>
<td>1800</td>
</tr>
</tbody>
</table>

Compressed: store separately highly frequent values: \((48,1900)\)
V-Optimal Histograms

• Defines bucket boundaries in an optimal way, to minimize the error over all point queries
• Computed rather expensively, using dynamic programming
• Modern databases systems use V-optimal histograms or some variations
Difficult Questions on Histograms

• Small number of buckets
 – Hundreds, or thousands, but not more
 – WHY ?

• Not updated during database update, but recomputed periodically
 – WHY ?

• Multidimensional histograms rarely used
 – WHY ?
Summary of Query Optimization

• Three parts:
 – search space, algorithms, size/cost estimation

• Ideal goal: find optimal plan. But
 – Impossible to estimate accurately
 – Impossible to search the entire space

• Goal of today’s optimizers:
 – Avoid very bad plans