Principles of Database Systems
CSE 544

Lecture #5
Views, Relational Query Languages
Announcements

• Homework 1 due next Monday

• Next reading assignment due next Wednesday

• Lecture on Thursday, May 2nd:
 – Moved to 9am-10:30am, CSE 403
Applications of Views

What applications does the paper describe?
Applications of Views

What applications does the paper describe?

• Query optimization
 – E.g. Indexes

• Physical and logical data independence
 – E.g. de-normalization, data partitioning

• Semantic caching

• Data integration
Denormalization

• Scenario: we have a relational schema that is in BCNF (recall: this means only the key implies any other attribute(s))

Purchase(pid, customer, product, store)
Product(pname, price)

• But we often need to join these two relations, so we compute their join
Denormalization

CREATE Table CustomerPurchase AS
 SELECT x.pid, x.customer, x.store, y.pname, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

• This table is not in BCNF (why not?)
• But that’s OK, the application still sees the original two relations. How?

 Purchase(pid, customer, product, store) – a view…
 Product(pname, price) – a view…
Data Integration Terminology

Local DB\(_1\) ... Local DB\(_k\)

\[V\]

Integrated Data

Global as View

Local as View

Which one needs query expansion, which one needs query answering using views?
Query Rewriting Using Views

Suppose you only have these two views:

\[v1(x,y) :- \text{black}(x), \text{edge}(x,y) \]
\[v2(x,y) :- \text{edge}(x,y), \text{black}(y) \]

Can you rewrite this query in terms of the views?

\[q(x,y) :- \text{edge}(x,z1), \text{black}(z1), \text{edge}(z1,z2),\text{edge}(z2,z3) \]
\[\text{black}(z3), \text{edge}(z3,y) \]

NOTE:
- \(\bigcirc \) means “any color”
- \(\bullet \) means “black”
Query Rewriting Using Views

Suppose you only have these two views:

v1(x,y) :- black(x), edge(x,y)
v2(x,y) :- edge(x,y), black(y)

Can you rewrite this query in terms of the views?

q(x,y) :- edge(x,z1), black(z1),
 edge(z1,z2), edge(z2,z3)
 black(z3), edge(z3,y)

Answer:

q(x,y) :- v2(x,z1), v1(z1,z2), v2(z2,z3), v1(z3,y)
Suppose you only have these two views:

\[
\begin{align*}
 v1(x, y) & \leftarrow \text{black}(x), \text{edge}(x, y) \\
 v2(x, y) & \leftarrow \text{edge}(x, y), \text{black}(y)
\end{align*}
\]

What about this query?
Query Rewriting Using Views

Suppose you only have these two views:

\[v1(x,y) :- \text{black}(x), \text{edge}(x,y) \]
\[v2(x,y) :- \text{edge}(x,y), \text{black}(y) \]

What about this query?

\[q(x,y) :- \text{black}(x), \text{edge}(x,z1), \text{black}(z1), \]
\[\text{edge}(z1,z2), \text{black}(z2), \text{edge}(z2,z3) \]
\[\text{black}(z3), \text{edge}(z3,y), \text{black}(y) \]
Query Rewriting Using Views

Suppose you only have these two views:

\[v1(x,y) :- \text{black}(x), \text{edge}(x,y) \]
\[v2(x,y) :- \text{edge}(x,y), \text{black}(y) \]

Can we rewrite this query?

\[q(x,y) :- \text{edge}(x,z1), \text{edge}(z1,z2), \]
\[\text{edge}(z2,z3), \text{edge}(z3,y) \]
Query Rewriting Using Views

Suppose you only have these two views:

\[v1(x, y) :- \text{black}(x), \text{edge}(x, y) \]
\[v2(x, y) :- \text{edge}(x, y), \text{black}(y) \]

Can we rewrite this query?

\[q(x, y) :- \text{edge}(x, z1), \text{edge}(z1, z2), \]
\[\text{edge}(z2, z3), \text{edge}(z3, y) \]

No! but you can retrieve all certain answers:
[Duschka & Genesereth'97]

Query Rewriting Using Views

Suppose you only have these two views:

\[
v1(x,y) :\text{- black}(x), \text{edge}(x,y)\\
v2(x,y) :\text{edge}(x,y), \text{black}(y)
\]

Can we rewrite this query?

\[
q(x,y) :\text{edge}(x,z_1), \text{edge}(z_1,z_2), \text{edge}(z_2,z_3), \text{edge}(z_3,y)
\]

Maximally contained rewriting is:

\[
q(x,y) : v1(x,z_1), v2(z_1,z_2), v1(z_2,z_3), v2(z_3,y)\\
q(x,y) : v2(x,z_1), v1(z_1,z_2), v2(z_2,z_3), v1(z_3,y)\\
q(x,y) : v2(x,z_1), v1(z_1,z_2), v1(z_2,z_3), v2(z_3,y)\\
q(x,y) : v1(x,z_1), v2(z_1,z_2), v1(z_2,z_3), v2(z_3,y)
\]

\[\ldots\]

\[\ldots\]

\[\ldots\]
Query Rewriting Using Views

Have this materialized view:

```
CREATE VIEW SeattleView AS
  SELECT y.buyer, y.seller, y.product, y.store
  FROM Person x, Purchase y
  WHERE x.city = 'Seattle'
    AND x.pname = y.buyer
```

Goal: rewrite this query in terms of the view

```
SELECT y.buyer, y.seller
FROM Person x, Purchase y
WHERE x.city = 'Seattle'
  AND x.pname = y.buyer
  AND y.product = 'gizmo'
```
Query Rewriting Using Views

\[
\text{SELECT buyer, seller} \\
\text{FROM SeattleView} \\
\text{WHERE product= 'gizmo'}
\]

\[
\text{SELECT y.buyer, y.seller} \\
\text{FROM Person x, Purchase y} \\
\text{WHERE x.city = 'Seattle'} \\
\text{AND x.pname = y.buyer} \\
\text{AND y.product='gizmo'}
\]
CREATE VIEW DifferentView AS
SELECT y.buyer, y.seller, y.product, y.store
FROM Person x, Purchase y, Product z
WHERE x.city = 'Seattle' AND x.pname = y.buyer AND y.product = z.pname AND z.price < 100

SELECT y.buyer, y.seller FROM Person x, Purchase y
WHERE x.city = 'Seattle' AND x.pname = y.buyer AND y.product = 'gizmo'

SELECT buyer, seller FROM DifferentView WHERE product = 'gizmo'

“Maximally contained rewriting”
Summary

- View inlining, or query modification
- Query answering/rewriting using views
- Updating views
- Incremental view update
Relational Query Languages

1. Relational Algebra

2. Recursion-free datalog with negation
 - This is the core of SQL, cleaned up

3. Relational Calculus

These three formalisms express the same class of queries
Find all actors who acted both in 1910 and in 1940:

Q: SELECT DISTINCT a.fname, a.lname
 FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
 WHERE a.id = c1.pid AND c1.mid = m1.id
 AND a.id = c2.pid AND c2.mid = m2.id
 AND m1.year = 1910 AND m2.year = 1940;
Two Perspectives

- **Named Perspective:**
 - Actor(id, fname, lname)
 - Casts(pid, mid)
 - Movie(id, name, year)

- **Unnamed Perspective:**
 - Actor = arity 3
 - Casts = arity 2
 - Movie = arity 3
1. Relational Algebra

Used internally by RDBMs to execute queries

The Basic Five operators:
• Union: \cup
• Difference: $-$
• Selection: σ
• Projection: Π
• Join: \bowtie

Renaming: ρ (for named perspective)
1. Relational Algebra (Details)

• **Selection**: returns tuples that satisfy condition
 – Named perspective: \(\sigma_{\text{year} = '1910'} \) (Movie)
 – Unnamed perspective: \(\sigma_3 = '1910' \) (Movie)

• **Projection**: returns only some attributes
 – Named perspective: \(\Pi_{\text{fname,lname}} \) (Actor)
 – Unnamed perspective: \(\Pi_{2,3} \) (Actor)

• **Join**: joins two tables on a condition
 – Named perspective: \(\text{Casts} \bowtie_{\text{mid} = \text{id}} \text{Movie} \)
 – Unnamed perspective: \(\text{Casts} \bowtie_{2 = 1} \text{Movie} \)
1. Relational Algebra

Q: SELECT DISTINCT a.fname, a.lname
 FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
 WHERE a.id = c1.pid AND c1.mid = m1.id
 AND a.id = c2.pid AND c2.mid = m2.id
 AND m1.year = 1910 AND m2.year = 1940;

Note how we renamed year to year1, year2
1. Relational Algebra

Q: SELECT DISTINCT a.fname, a.lname
 FROM Actor a, Casts c1, Movie m1, Casts c2, Movie m2
 WHERE a.id = c1.pid AND c1.mid = m1.id
 AND a.id = c2.pid AND c2.mid = m2.id
 AND m1.year = 1910 AND m2.year = 1940;
2. Datalog

• Very friendly notation for queries
• Designed for *recursive* queries in the 80s
• Today it’s used everywhere: commercial implementations (LogicBlox), networking (Overlog), programming languages, …

• In class
 – *recursion-free* datalog with negation (next)
 – *recursive datalog*, (in the “Theory” part)
2. Datalog

How to try out datalog quickly:

• Download DLV from http://www.dbai.tuwien.ac.at/proj/dlv/

• Run DLV on this file:

parent(william, john).
parent(john, james).
parent(james, bill).
parent(sue, bill).
parent(james, carol).
parent(sue, carol).

male(john).
male(james).
female(sue).
male(bill).
female(carol).

grandparent(X, Y) :- parent(X, Z), parent(Z, Y).
father(X, Y) :- parent(X, Y), male(X).
mother(X, Y) :- parent(X, Y), female(X).
brother(X, Y) :- parent(P, X), parent(P, Y), male(X), X != Y.
sister(X, Y) :- parent(P, X), parent(P, Y), female(X), X != Y.
2. Datalog: Facts and Rules

Facts = tuples in the database

Actor(344759, ‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(29445, ‘Ave Maria’, 1940).

Rules = queries

Q1(y) :- Movie(x,y,z), z='1940'.

Find Movies made in 1940
2. Datalog: Facts and Rules

Facts = tuples in the database

- Actor(344759, ‘Douglas’, ‘Fowley’).
- Casts(344759, 29851).
- Casts(355713, 29000).

Rules = queries

- Q1(y) :- Movie(x, y, z), z='1940'.
- Q2(f, l) :- Actor(z, f, l), Casts(z, x), Movie(x, y, ’1940’).

Find Actors who acted in Movies made in 1940
2. Datalog: Facts and Rules

Facts = tuples in the database

Actor(344759, ‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(29445, ‘Ave Maria’, 1940).

Rules = queries

Q1(y) :- Movie(x,y,z), z=’1940’.
Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).
Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
 Casts(z,x2), Movie(x2,y2,1940).

Find Actors who acted in a Movie in 1940 and in one in 1910
2. Datalog: Facts and Rules

Facts = tuples in the database

Actor(344759,'Douglas', 'Fowley').
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, 'A Night in Armour', 1910).
Movie(29000, 'Arizona', 1940).
Movie(29445, 'Ave Maria', 1940).

Rules = queries

Q1(y) :- Movie(x,y,z), z='1940'.
Q2(f, l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,'1940').
Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910), Casts(z,x2), Movie(x2,y2,1940)

Extensional Database Predicates = EDB = Actor, Casts, Movie

Intensional Database Predicates = IDB = Q1, Q2, Q3
2. Datalog: Terminology

Q2(f, l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,’1940’).

f, l = head variables
x,y,z = existential variables
2. Datalog program

Find all actors with Bacon number ≤ 2

B0(x) :- Actor(x,'Kevin', 'Bacon')
B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)
B2(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B1(y)
Q4(x) :- B0(x)
Q4(x) :- B1(x)
Q4(x) :- B2(x)

Note: Q4 is the union of B1 and B2
2. Datalog with negation

Find all actors with Bacon number ≥ 2

\[
\begin{align*}
\text{B0}(x) & :\text{ Actor}(x, \text{'Kevin'}, \text{'Bacon'}) \\
\text{B1}(x) & :\text{ Actor}(x, f,l), \text{ Casts}(x,z), \text{ Casts}(y,z), \text{ B0}(y) \\
\text{Q6}(x) & :\text{ Actor}(x, f,l), \text{ not B1}(x), \text{ not B0}(x)
\end{align*}
\]
2. Safe Datalog Rules

Here are unsafe datalog rules. What’s “unsafe” about them?

U1(x,y) :- Movie(x,z,1994), y>1910

U2(x) :- Movie(x,z,1994), not Casts(u,x)

A datalog rule is safe if every variable appears in some positive relational atom.
2. Datalog v.s. SQL

- Non-recursive datalog with negation is a cleaned-up, core of SQL

- You should be able to translate easily between non-recursive datalog with negation and SQL
Relational Calculus

• Aka *predicate calculus* or *first order logic*

• TRC = Tuple RC
 – See book

• DRC = Domain RC = unnamed perspective
 – We study only this one
Relational Calculus

Relational predicate P is a formula given by this grammar:

$$P ::= \text{atom} \mid P \land P \mid P \lor P \mid P \Rightarrow P \mid \neg P \mid \forall x.P \mid \exists x.P$$

Query Q:

$$Q(x_1, \ldots, x_k) = P$$
Relational Calculus

Relational predicate P is a formula given by this grammar:

\[
P ::= \text{atom} \mid P \land P \mid P \lor P \mid P \rightarrow P \mid \neg P \mid \forall x.P \mid \exists x.P
\]

Query Q:

\[
Q(x_1, \ldots, x_k) = P
\]

Example: find the first/last names of actors who acted in 1940

\[
Q(f,l) = \exists x. \exists y. \exists z. (\text{Actor}(z,f,l) \land \text{Casts}(z,x) \land \text{Movie}(x,y,1940))
\]
Relational Calculus

Relational predicate P is a formula given by this grammar:

\[P ::= \text{atom} \mid P \land P \mid P \lor P \mid P \Rightarrow P \mid \text{not}(P) \mid \forall x. P \mid \exists x. P \]

Query Q:

\[Q(x_1, \ldots, x_k) = P \]

Example: find the first/last names of actors who acted in 1940

\[Q(f,l) = \exists x. \exists y. \exists z. (\text{Actor}(z,f,l) \land \text{Casts}(z,x) \land \text{Movie}(x,y,1940)) \]

What does this query return?

\[Q(f,l) = \exists z. (\text{Actor}(z,f,l) \land \forall x. (\text{Casts}(z,x) \Rightarrow \exists y. \text{Movie}(x,y,1940))) \]
Find all bars that serve all beers that Fred likes

\[A(x) = \forall y. \text{Likes("Fred", } y) \implies \text{Serves}(x,y) \]

• Note: \(P \implies Q \) (read \(P \) implies \(Q \)) is the same as \((\text{not } P) \lor Q\)

In this query: If Fred likes a beer the bar must serve it \((P \implies Q)\)

In other words: Either Fred does not like the beer \((\text{not } P)\) OR the bar serves that beer \((Q)\).

\[A(x) = \forall y. \text{not(Likes("Fred", } y)) \lor \text{Serves}(x,y) \]
More Examples

Find drinkers that frequent some bar that serves some beer they like.
More Examples

Find drinkers that frequent some bar that serves some beer they like.

\[
Q(x) = \exists y. \exists z. \text{Frequents}(x, y) \land \text{Serves}(y, z) \land \text{Likes}(x, z)
\]
More Examples

Find drinkers that frequent some bar that serves some beer they like.

\[Q(x) = \exists y. \exists z. \text{Frequents}(x, y) \land \text{Serves}(y, z) \land \text{Likes}(x, z) \]

Find drinkers that frequent only bars that serves some beer they like.
More Examples

Find drinkers that frequent some bar that serves some beer they like.

\[Q(x) = \exists y. \exists z. \text{Frequents}(x, y) \land \text{Serves}(y, z) \land \text{Likes}(x, z) \]

Find drinkers that frequent only bars that serves some beer they like.

\[Q(x) = \forall y. \text{Frequents}(x, y) \Rightarrow (\exists z. \text{Serves}(y, z) \land \text{Likes}(x, z)) \]
More Examples

Find drinkers that frequent some bar that serves some beer they like.

$$Q(x) = \exists y. \exists z. \text{Frequents}(x, y) \land \text{Serves}(y, z) \land \text{Likes}(x, z)$$

Find drinkers that frequent only bars that serves some beer they like.

$$Q(x) = \forall y. \text{Frequents}(x, y) \Rightarrow (\exists z. \text{Serves}(y, z) \land \text{Likes}(x, z))$$

Find drinkers that frequent some bar that serves only beers they like.
More Examples

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = ∃y. ∃z. Frequents(x, y) ∧ Serves(y, z) ∧ Likes(x, z)

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = ∀y. Frequents(x, y) ⇒ (∃z. Serves(y, z) ∧ Likes(x, z))

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = ∃y. Frequents(x, y) ∧ ∀z. (Serves(y, z) ⇒ Likes(x, z))
More Examples

Find drinkers that frequent some bar that serves some beer they like.

\[Q(x) = \exists y. \exists z. \text{Frequents}(x, y) \land \text{Serves}(y, z) \land \text{Likes}(x, z) \]

Find drinkers that frequent only bars that serves some beer they like.

\[Q(x) = \forall y. \text{Frequents}(x, y) \Rightarrow (\exists z. \text{Serves}(y, z) \land \text{Likes}(x, z)) \]

Find drinkers that frequent some bar that serves only beers they like.

\[Q(x) = \exists y. \text{Frequents}(x, y) \land \forall z. (\text{Serves}(y, z) \Rightarrow \text{Likes}(x, z)) \]

Find drinkers that frequent only bars that serves only beer they like.
Find drinkers that frequent some bar that serves some beer they like.

Q(x) = ∃y. ∃z. Frequents(x, y) ∧ Serves(y, z) ∧ Likes(x, z)

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = ∀y. Frequents(x, y) ⇒ (∃z. Serves(y, z) ∧ Likes(x, z))

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = ∃y. Frequents(x, y) ∧ ∀z.(Serves(y, z) ⇒ Likes(x, z))

Find drinkers that frequent only bars that serves only beer they like.

Q(x) = ∀y. Frequents(x, y) ⇒ ∀z.(Serves(y, z) ⇒ Likes(x, z))
Domain Independent RC

• As in datalog, one can write “unsafe” RC queries; they are also called *domain dependent*

A(x) = not Likes("Fred", x)
A(x,y) = Likes("Fred", x) OR Serves("Bar", y)
A(x) = ∀y. Serves(x,y)

• Lesson: make sure your RC queries are domain independent
Relational Calculus

How to write a complex SQL query:
• Write it in RC
• Translate RC to datalog (see next)
• Translate datalog to SQL

Take shortcuts when you know what you’re doing
From RC to Datalog$^-$ to SQL

Query: Find drinkers that like some beer so much that they frequent all bars that serve it

\[Q(x) = \exists y. \text{Likes}(x, y) \land \forall z. (\text{Serves}(z, y) \Rightarrow \text{Frequents}(x, z)) \]
From RC to Datalog$^-$ to SQL

Query: Find drinkers that like some beer so much that they frequent all bars that serve it

$$Q(x) = \exists y. \text{Likes}(x, y) \land \forall z. (\text{Serves}(z, y) \Rightarrow \text{Frequents}(x, z))$$

Step 1: Replace \forall with \exists using de Morgan’s Laws

$$Q(x) = \exists y. \text{Likes}(x, y) \land \neg \exists z. (\text{Serves}(z, y) \land \neg \text{Frequents}(x, z))$$

$\forall x \ P(x)$ same as $\neg \exists x \ \neg P(x)$

$\neg (\neg P \lor Q)$ same as $P \land \neg Q$
From RC to Datalog to SQL

Query: Find drinkers that like some beer so much that they frequent all bars that serve it

Q(x) = ∃y. Likes(x, y) ∧ ∀z.(Serves(z,y) ⇒ Frequents(x,z))

Step 1: Replace ∀ with ∃ using de Morgan’s Laws

Q(x) = ∃y. Likes(x, y) ∧ ¬∃z.(Serves(z,y) ∧ ¬Frequents(x,z))

Step 2: Make all subqueries domain independent

Q(x) = ∃y. Likes(x, y) ∧ ¬∃z.(Likes(x,y) ∧ Serves(z,y) ∧ ¬Frequents(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)
From RC to Datalog to SQL

Step 3: Create a datalog rule for each subexpression;
(shortcut: only for “important” subexpressions)

\[Q(x) = \exists y. \text{Likes}(x, y) \land \neg \exists z. (\text{Likes}(x, y) \land \text{Serves}(z, y) \land \neg \text{Frequents}(x, z)) \]

\[H(x, y) \]

\[H(x, y) :- \text{Likes}(x, y), \text{Serves}(z, y), \neg \text{Frequents}(x, z) \]

\[Q(x) :- \text{Likes}(x, y), \neg H(x, y) \]
From RC to Datalog to SQL

H(x,y) :- Likes(x,y), Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

Step 4: Write it in SQL

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
 (SELECT * FROM Likes L2, Serves S
 WHERE L2.drinker=L.drinker and L2.beer=L.beer
 and L2.beer=S.beer
 and not exists (SELECT * FROM Frequents F
 WHERE F.drinker=L2.drinker
 and F.bar=S.bar))
From RC to Datalog\(^{-}\) to SQL

H(x,y) :- Likes(x,y), Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

Unsafe rule

Improve the SQL query by using an unsafe datalog rule

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
 (SELECT * FROM Serves S
 WHERE L.beer=S.beer
 and not exists (SELECT * FROM Frequents F
 WHERE F.drinker=L.drinker
 and F.bar=S.bar))
Summary of Translation

- RC \rightarrow recursion-free datalog w/ negation
 - Subtle: as we saw; more details in the paper
- Recursion-free datalog w/ negation \rightarrow RA
- RA \rightarrow RC

Theorem: RA, non-recursive datalog w/ negation, and RC, express exactly the same sets of queries: RELATIONAL QUERIES