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Abstract 

In this paper, we evaluate three types of embedded data storage models on mobile devices. SQLite is a 

relational database, CouchLite is a  key-value NoSQL database and DbO4 is an object-oriented 

databases. Mobile phones are becoming powerful enough to do a large amount of processing without 

leveraging cloud services.  Most mobile applications are data driven and their performance depends on 

data availability.   We developed a comprehensive set of benchmarks to test each database in an 

Android application.  The results from our tests clearly show that the relational model has superior 

performance on mobile phones; however, there may be situations where only key-based lookups are 

necessary that a NoSQL solution would suffice. 

Background 

The popularity of NoSQL databases for cloud computing has inspired initiatives to install NoSQL 

databases on mobile devices.  There are several reasons why such a solution is attractive: including 

replication, cloud synchronization, and the document data model.  However, most NoSQL solutions are 

designed for large data centers with access to substantial computational power and network 

infrastructure. Little work has been done testing how a NoSQL databases preforms on the limited 

hardware of a mobile devices.   

The motivation for this project comes from the design of the next version Open Data Kit, an Android 

based tool set for mobile data collection and processing.  We have been migrating the tools over from 

native Android code to HTML5 and Javascript.  One discussion that arose during this switch was 

migrating from SQLite to CouchDB.  We were unable to find performance metrics for any NoSQL 

database on mobile devices. 

This work is of particular importance to the research in our lab because we deploy technology solutions 

in developing countries where infrastructure support is never a guarantee.  This means that an always 

on network connection cannot be assumed and a local copy of the data should be present on the 

phone.  At the same time it is also important to maximize battery life because the interval between 

phone charging could be large.  Reduced battery life on modern smart phones is already a big issue in 

low resource environments and requiring the phone to do even more by running a NoSQL or SQL 

database could reduce it more.  We want to make sure we pick the technology that the best 

performance. 



Related Work 

There are several standard benchmarks out there. OLTP and OLAP style benchmarks [2, 3, 4] are for 

large data-center level systems rather than mobile environment. TPC-C and TPC-E are benchmarks for 

SQL based enterprise applications [5]. YCSB is a benchmark, made by Yahoo, for evaluation of NoSQL 

based cloud serving systems [6]. 

In general, there are no standard benchmarks for mobile based datastores. There is some recent work in 

proposing evaluation of  SQL based embedded databases on mobile phones [7, 8]. However, there is no 

work which compares locally installed NoSQL database like CouchDB with SQL databases like SQLite. 

Our Approach 

Benchmark Data Set 

In order to standardized tests, benchmarking tools like YCSB create large datasets based on a predefined 

schema and fill them with random data.  Generated data sets enable the benchmark to increase the size 

and complexity of tests while maintaining a consistent standard for comparison.   

We developed the following simple schema where ‘seller’ and ‘buyer’ in transaction is a foreign key ‘id’ 

from the people relation. You can consider this as a subset of ebay’s data model which is presenting 

data on who sold what to whom. 

PEOPLE (id, name, age, gender, color) 

TRANSACTION (id, seller, buyer, price, item, date) 

This schema was populated by a FieldGenerator class that used an XorShift random number generator 

and arrays of predefined data to generate reasonable tables as efficiently as possible.  Using the 

FieldGenerator we could easily scale the size of the database to compare how each database system 

performed on large datasets. When creating tables the number of transactions was always three times 

the number of people. 

Benchmark Queries 

The benchmark queries we created test all CRUD operations of the database and we have broken these 

operations down into the following benchmark test.  Each benchmark is described using SQLite, 

however, the exact implementation varies from database to database; for example in a document based 

storage engine there is no schema so the structure is maintained while inserting documents. 

 

Create  Benchmark: This comprises of database initialization with defined tables/structure. 

CREATE TABLE people (id integer primary key, name text, age 

integer,  gender text, color text) 

CREATE TABLE transactions (id integer primary key, seller integer, 

buyer integer, price real, item text, date text) 



Insert Benchmark:  This comprises of all queries to load the data into the data management system and 

inserts an arbitrary number of tuples into the schema. 

INSERT INTO people (id,name,age,gender,color) VALUES (?,?,?,?,?) 

INSERT INTO transactions (id,seller,buyer,price,item,date) VALUES 

(?,?,?,?,?,?) 

Data Fetch: Queries which retrieve tuples based on specific value of indexed and non-indexed attribute. 

Test 1: SELECT * FROM people WHERE id=? (Indexed Attribute) 

Test 2: SELECT * FROM people WHERE name=? (Non-indexed Attribute) 

Range Query: Queries which retrieve tuples within some range. For example, return all health centers 

which are in a particular district. 

Test 3: SELECT * FROM people WHERE ?<age and age<? 

Aggregation: Queries which return tuples with some computation like count or average over 

a set of group based on some attribute. 

Test 4: SELECT age, count(*) FROM people GROUP BY age 

Test 5: SELECT buyer, sum(price) FROM transactions GROUP BY buyer 

Join: Join query which fetch data by joining two table on a specific attribute. 

Test 6: SELECT t.id,p.name,p.age FROM transactions t, people p WHERE 
p.id=t.buyer and ?<=p.age 

SQL, NoSQL and Object-Oriented databases have very different approaches to handling each type of 

operation than SQL. Therefore, we added a layer in the benchmarking system to enable the support of 

each test mentioned above.  Db4oLite does not have a “Group By” operation and so this was 

implemented in high level Java code using a hash table and calculating the aggregation functions.  In 

CouchDB any query not on the indexed key of the database must be processed through a map/reduce 

view.  In CouchLite these views are created in Java and executed at runtime. 

Benchmark Metrics 

We identified a set of metrics for the benchmarking system to record. These metrics are listed below. 

They represent the important factors with respect to an application performance. These metrics were 

evaluated for each test against all selected databases. 

Average Query Execution Time: Average time for executing an individual query of a particular query 

category, as defined above. Against each category, ten queries with different parameters will be 

executed. 

Queries per Second: Average number of queries per second will be evaluated for each category. This will 

determine the throughput for each DBMS. 



Overall Runtime: The total time for all benchmark to run for each DBMS. 

Embedded Android Databases 

The first step for getting these benchmarks working was setting up each database in Android. SQLite [9] 

is very easy to set up since the Android SDK comes preloaded with libraries to create and interface with 

SQLite files. 

CouchDB is more difficult to set up.  Since both of us were unfamiliar with NoSQL databases we started 

by installing CouchDB on a Linux laptop.  CouchDB is accessed through a REST API and the main tool for 

viewing the database is a web application called Futon.  Futon is to CouchDB what phpMyAdmin is to 

MySQL.  There is an Android application called MobileFuton which brings CouchDB to an Android phone 

but the only method of accessing it is through the REST API.  We felt that requiring all data access for 

CouchDB to go through the network stack would bias our benchmarks towards SQLite and so we looked 

for a different solution. 

We found a very recent port of Couchbase Server to iOS and Android called CouchbaseLite [10].  This 

turned out to be the perfect implementation of couch to test with since like SQLite CouchbaseLite acts 

as an embedded DBMS. The documentation for CouchbaseLite say it is analogous to CouchDB in the 

same way SQLite is analogous to mySQL.  By using CouchbaseLite we would be comparing more closely 

to SQLite. 

Setting up Db4o [11] was relatively easy comparing to CouchDB. Since Db4o is written in java and .NET, 

therefore it was easy to integrate it in android. Since we wanted it to be an embedded database, so we 

worked on ways make that possible. In that struggle, we found out Db4oLite that is java library. This 

library was then ported into android environment. 

We implemented an interface in each of these three embedded databases that could be driven by a 

benchmark test harness.  

Results 

A full trial for each benchmark consists of creating the database files, setting up any necessary schema, 

and then running each of the six queries ten times.  We recorded the time it took for each part of the 

benchmark to complete.  To test the scalability of the three databases we ran all benchmarks seven 

times and increased the number of tuples inserted on each run.  Below is a series of charts and tables 

showing our data. 



 

Figure 1:  The average time to create all files associated with the embedded database.  CouchLite was 

five times slower than SQLite and Db4O, however, at one second this is not a considerable overhead 

considering each database is only created once. 

 

 

 

Figure 2:  The average number of inserts per second for each system.  There is no significant difference 

in insert speed as the number of inserts increase from ten to one thousand.  On average SQLite can 

insert twice as many tuples per second as CouchLite.  This is a significant difference and in our largest 

insert test SQLite took 5.8 minutes while CouchLite took 16.9 min. 
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Figure 3: The time spent executing Test 1, which is a simple indexed table lookup.  Not surprisingly there 

is little correlation between the number of tuples being searched and the time it takes for an indexed 

lookup since all three databases are highly optimized for indexed searches.  However, SQLite 

consistently performed three to five times faster than CouchLite and DbO4 was often slightly faster than 

SQLite and at 5000 tuples DbO4 takes 65.27 times as long as SQLite while CouchLite takes 257.47 times 

as long.  A similar pattern is observed for Test 3 and Test 6. 
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Figure 4: The time spent executing Test 2, which is a non-indexed lookup on a string field.  Unlike in Test 

1, where the look up field was an index, this time an increase in execution time as the number of tuples 

increases is easily observed.  For DbO4 and CouchLite this increase is clearly exponential, while the 

increase for SQLite is not as dramatic.  A similar pattern in execution time vs number of tuples was 

observed for Test 3, Test 4, and Test 6. 

 

 

Figure 5: The time spent executing Test 5 which is an aggregate sum.  At one thousand tuples this query 

took forty eight minutes for DbO4 and ten minutes for CouchLite, while only 25 seconds for SQLite.  This 

query was taking so long that we excluded it from our benchmarks for 2000 and 5000 tuples.  This query 

groups by a non-indexed field and sums over a floating point value.  Neither DbO4 or CouchLite are 

optimized for this type of query. 

  

Tuples SQLite DbO4 CouchLite 

10 0.0199 0.0274 0.0793 

25 0.031 0.0648 0.14046 

50 0.11 0.1587 0.246 

100 0.2856 0.528 0.54823 

200 0.3295 1.5984 1.290916 

400 0.498 7.3842 3.537616 

1000 1.6969 50.341 15.252016 

 

Table 1: The total time, in minutes, each database takes to run all benchmarks with a given number of 

input rows.  There is a very clear ordering and SQLite consistently outperforms CouchLite which is 

slightly faster than DbO4.    
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Conclusion 
We expected that each database would excel at some parts of each benchmark and do poorly on others 

and that based on the results we could recommend a different embedded database for different tasks.    

This turned out to only be true for DbO4 which was very fast at creating, inserting, and simple field 

based lookups but horrible at any query implementing a group by or aggregate function.  SQLite 

performed very well under a high load and the most complicated queries we included in our benchmark.   

CouchLite did preform adequately on indexed lookups and queries requiring only a simple map function, 

however, it did not scale very well.   This makes sense since one of the primary use cases for  NoSQL 

databases like CouchDB is in embarrassingly parallel environments where map/reduce views can be 

executed and cashed for quick key based lookup.  On a mobile device the views have to be calculated at 

runtime.  Based on the results of our tests SQLite is the best embedded database for mobile phones. 
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