
Performance Analysis of Cloud Relational Database

Services

Jialin Li

lijl@cs.washington.edu

Naveen Kr. Sharma

naveenks@cs.washington.edu

Adriana Szekeres

aaazs@cs.washington.edu

June 7, 2013

1 Introduction and Motivation

The growing trend of cloud applications and big data brings a lot of interesting challenges as a software
developer and computer engineer. Firstly, engineers have to install and build a reliable and scalable
database system and monitor their status constantly to deal with failures. Further, developers have to
customize their applications according to the underlying system and adapt to changes. This is time
consuming as well as a wastage of resources. As a result, software giants like Amazon, Google and
Microsoft have started offering data management services in the cloud. This is attractive for small
to medium scale applications/companies who do not want to spend a lot of resources on maintaining
expensive data management services. The developers need not worry about backend issues and can
rapidly create, scale and extend applications into the cloud. They can also use the tools offered by these
services to efficiently analyze large datasets quickly and efficiently.

As many big companies now offer this kind of service in the cloud, the clients, faced with multiple
service providers, must make a decision on which of the available services to use. One of the questions
he/she might have is about the value for money of each of the services he/she considers. On the other
hand, he/she might be interested in just the performance or scalability of the services. In this project
we address these questions by evaluating and benchmarking two such services from Amazon and Google.

2 Project Description and Approach

The goal of the project is to analyze the performance, value for money and scalability of several
relational databases offered as cloud services for big data analysis. We will use the well known TPC-H
benchmark to measure the performance and, if information is available, we will normalize the results
taking into account the infrastructure on which each service is running. Our approach to benchmarking
can be split up into the following phases:

Selecting the TPC Benchmark: First we select appropriate benchmark to evaluate the systems
under consideration. The criteria here is that it should stress the specific parts of the database system
which we want to measure. Since we are interested in high performance cloud services, we care only about
performance (query evaluation time) and scalability (trend of query evaluation time with increasing data
size and number of nodes).

Choosing the Cloud Services: Next, we choose the cloud services we will be benchmarking. Since
we want a fair comparison, we only choose services which provide the same set of features, in our case high
performance and scalable querying service for massive datasets. We had several options such as Amazon
Redshift[6], Google BigQuery[2], Google CloudSQL[3], Microsoft Azure SQL[4], Amazon Dynamo[5] and
several others. We describe our chosen services later in this section.

Running the Benchmark: This phase involves running the benchmark queries on different services
with varying workloads and configuration parameters. As a baseline, we run the same queries with same
dataset on a commodity desktop machine running PostgreSQL 9.1.

1

• Measure query response time for different types of queries in the TPC-H benchmark.
• Measure query response time for a specific query while varying dataset sizes.
• Measure query response time for a specific query while varying number of server nodes.

In the subsequent subsections, we describe the benchmark we chose and justify our choice. We also
describe the two services which we decided to benchmark and what type of features they provide.

2.1 TPC-H Benchmark

There are two types of queries that are usually executed during the life span of a database: OLTP
(Online Transaction Processing) and DSS (Decision Support). While OLTP quries are for information
retrieval and information update, the latter type of queries help users make business decisions, e.g.
determine quickly the trends in sales. The DSS queries are usually more complex and must deal with
a larger volume of data. They are basically used for big data analysis. Both BigQuery and Redshift
are decision support data warehouses that bring big data analysis into the cloud. They are optimized
for high-performance analysis. Therefore, to evaluate the performace of the two systems, we will use a
decision support benchmark, the TPC-H[1] benchmark.

The TPC-H database consists of 8 tables (part, partsupp, lineitem, orders, customer, supplier, nation,
region) and the data can be generated for a set of fixed scale factors (SF) (1, 10, 30, 100, 300, 1000,
3000, 10000, 30000, 100000). Each table will have the following number of lines:

part partsupp lineitem orders customer supplier nation region

Rows SF*200,000 SF*800,000 SF*6,000,000 SF*1,500,000 SF*150,000 SF*10,000 25 5

The scale factor also specifies how many GB of data will be generated. For example, for a SF of
30, 30GB of data will be generated, out of which the lineitem table will have 23GB of data. For our
experiments we will generate data for a maximum of 100GB, i.e. using SF 1, 10, 30 and 100.

While Redshift required no changes to support TPC-H queries and data, BigQuery required substantial
changes to the generated datasets, schemas and queries. First, the generated TPC-H data to populate
the tables needed to be transformed into either CSV or JSON in order to be loaded by BigQuery. The
CSV format is not appropriate for the TPC-H datasets because there are commas in the values of several
fields. Therefore we had to transform the data into the JSON format. Second, BigQuery uses a simple
SQL-like language that doesn’t have the same syntax as the TPC-H generated queries. Therefore, we
had to do the following changes to the schemas and queries generated by TPC-H (See Appendix for the
exact modifications):

• BigQuery does not support the DATE type, which appears in several places in the TPC-H schemas.
Therefore, we used INTEGER instead of DATE and converted the DATE values into the equivalent
POSIX time, defined as the number of seconds that have elapsed since midnight Coordinated
Universal Time (UTC), 1 January 1970. We preserved the modification across the Redshift schemas.
Also, the other data types supported by BigQuery are STRING, FLOAT, BOOLEAN, RECORD
and TIMESTAMP. Therefore, we had to adapt the schemas generated by TPC-H to use these
types.

• BigQuery does not support the LIKE operator, but instead it has the CONTAINS and REG-
EXP MATCH operators that we used.

• BigQuery does not support the EXISTS operator.

• In BigQuery one has to explicitly use the JOIN/JOIN EACH operator for the joins and each
SELECT statement must contain at most one JOIN/JOIN EACH clause.

• BigQuery doesn’t support constructs like ” WHERE column name <(SELECT .. FROM)” there-
fore we replaced these with joins.

2

2.2 Google BigQuery

Google BigQuery is a cloud-based interactive query service for massive datasets. BigQuery is the
external implementation of one of Google’s core technologies called Dremel[7]. BigQuery can scan millions
of rows without an index in a second by massively parallelizing each query and running them on tens
of thousands of servers simultaneously. BigQuery uses the same underlying technology as Dremel which
includes columnar storage for high scan throughput and high compression ratio, and tree architecture for
dispatching queries and aggregating results across thousands of machines in a few seconds. BigQuery
provides a simple interface to upload table(s) and run SQL queries on them. It abstracts away the
underlying implementation or runtime details, hence the user has no knowledge of how many nodes are
being used for processing. As a result BigQuery charges users per GB of data processed.

2.3 Amazon Redshift

Amazon Redshift is a fully managed cloud database management system. It uses columnar storage
technology and automatically parallelize and distribute queries across multiple nodes. The interface
exposed to users is a simple SQL like interface: Redshift supports most of the standard SQL queries and
data types. No explicit parallel or distributed query commands are required, therefore, users can use the
same set of queries regardless of the number of nodes. During setup, the number of Redshift nodes and
the type of nodes need to be specified. There are two types of nodes available,

• a smaller node (XL) with 2 cores, 15GB of memory and 2TB of local storage
• a larger node (8XL) with 16 cores, 120GB of memory and 16TB of local storage

However, users still need to decide on data partitioning scheme. Redshift provides DIST KEY key
word to indicate which field to use as data partition hash key. Skew may happen if a bad DIST KEY
is selected and will inversely affect parallel query performance. Amazon charges Redshift users only
according to the uptime of all Redshift servers reserved. Data transfer and processing do not incur
charges.

3 Related Work

The ability to process large amounts of data into the cloud has been around for some time. Google has
been using MapReduce since 2004 to process its big data. However, these solutions still required a fair
amount of time and programming skills. Therefore, new systems, like BigQuery and Redshift, emerged
that made possible interactive/real-time queries on mega amount of information. A query on billions of
rows can take just seconds. These technologies are very new and we didn’t find any comparison studies
on such systems. Instead, there are comparison studies on previous cloud based databases.

Prior work has looked at benchmarking cloud-based data management systems. Shi et al.[8] bench-
marked some representative cloud-based DBMS and compared their performance under different work-
loads. Four systems were studied: HBase, Cassandra, Hive and HadoopDB. The first three are filesystem-
based while HadoopDB is based on traditional DBMS. Two types of benchmarks were tested: data read-
/write (including both random and sequential) and structured SQL queries. The results showed that
DBMS systems which use MapReduce as the framework perform better on queries. The two filesystem-
based DBMS, HBase and Hive, have similar or even better performance compare to the DBMS based
HadoopDB on SQL queries, even though they do not support SQL queries and require programmers
to rewrite the queries using their own APIs. Our work differs from theirs in that we focus on the per-
formance of large scale cloud DBMS on complex SQL queries. We use the TPC-H benchmark which
contains more sophisticated queries than the simple grep, range queries. In addition, speed-ups and
scale-ups will be the major tests on these systems. Shi et al.’s work only tested systems’ scalability on
data read/write, but not on general SQL queries. We will perform experiments with TPC-H queries on
different data sizes and node numbers.

3

4 Evaluation

In this section, we present the results of our benchmarking. We are interested in answering three main
questions. First, how well do these queries speedup as we increase processing power. Second, what is
the scaleup of these services, i.e. how does the query runtime vary with increasing dataset size. Lastly,
we want to see how cost effective these services are, and which of them give better value for money.

4.1 Queries

We were able to port all TPC-H queries for BigQuery, except those queries that use views, which are
not supported in BigQuery. We have included all the modified queries in the appendix. Although we
ran most of the queries on both systems, we will present the results for only a few of them (Q1, Q2, Q6
and Q16), as they capture all the characteristics and trends exibited by all the queries.

4.2 Redshift

There are two major sets of experiments we tested on Amazon’s Redshift: speed-ups and scale-ups. In
the speed-up test, we keep the data size constant (100GB), increase the number of nodes and measure
the time each query takes. In the ideal case, query execution time should decrease linearly as we increase
the number of nodes. In the scale-up test, we increase the data size as well as the number of nodes, at
the same rate. Therefore, we will have queries running on 1GB of data and on 1 node, 2GB of data on
2 nodes, 4GB of data on 4 nodes, etc. Query run time should ideally keep constant as we increase the
scale factor (both data size and number of nodes). We first present the result for speed-up.

As shown in figure 1(a), the run time for two out of the four queries (query 1 and 6) decrease almost
linearly as we increase the number of nodes. We found out by analyzing the query that these two queries
are embarrassingly parallel. It means that Redshift has good speed-up when running queries that have
high degree of parallelism. The speed-up for the other two queries, especially query 2, are worse mostly
because of the low degree of parallelism. One thing we observed from our experiment is that there are
some caching effects on Redshift. It means that running similar queries repeatedly will decrease query
run time. To account for this effect, we also report the results for the warmed-up caches. This is shown
in figure 1(b). We observed slightly better speed-ups for all queries, but the general trends remain the
same.

 1

 10

 100

 1 2 4 8 16

Q
ue

ry
 R

un
tim

e
(1

00
G

 d
at

as
et

, C
ol

d
C

ac
he

)

Number of Nodes

TPC-H Query 1
TPC-H Query 2
TPC-H Query 6

TPC-H Query 16

(a) Cold Cache

 1

 10

 100

 1 2 4 8 16

Q
ue

ry
 R

un
tim

e
(1

00
G

 d
at

as
et

, H
ot

 C
ac

he
)

Number of Nodes

TPC-H Query 1
TPC-H Query 2
TPC-H Query 6

TPC-H Query 16

(b) Hot Cache

Figure 1: RedShift Speedup with 100GB dataset

Figure 2(a) shows the scale-up effect of Redshift. The scale on the x-axis means the scaling factors
we applied to both the number of nodes and the data size. As shown in the figure, the runtime for all
the queries stay relatively constant across all scales. There are some fluctuations but there is no general
increasing trend in any of the queries. It means that Redshift have good scale-up for different kinds of
queries. We also report the results for the warmed-up cache in figure 2(b) which shows similar trends.

4

 1

 10

 100

 1 2 4 8 16

Q
ue

ry
 R

un
tim

e
(C

ol
d

C
ac

he
)

Scale factor

TPC-H Query 1
TPC-H Query 2
TPC-H Query 6

TPC-H Query 16

(a) Cold Cache

 0.1

 1

 10

 1 2 4 8 16

Q
ue

ry
 R

un
tim

e
(H

ot
 C

ac
he

)

Scale factor

TPC-H Query 1
TPC-H Query 2
TPC-H Query 6

TPC-H Query 16

(b) Hot Cache

Figure 2: RedShift Scaleup with 100GB dataset

4.3 BigQuery

As described earlier, BigQuery provides the user with a blackbox query executor, i.e., the user has
no control over how many server nodes are actually used for processing. Hence to evaluate how well
BigQuery scales, we measure the runtime of all TPC-H queries with increasing dataset sizes. Figure 3
shows the results for TPC-H queries 1, 2, 6 and 16.

 1

 10

 100

 1000

 1 10 100

Q
ue

ry
 R

un
tim

e
(s

ec
)

Dataset size (GB)

TPC-H Query 1
TPC-H Query 2
TPC-H Query 6

TPC-H Query 16

Figure 3: BigQuery Speedup and Scaleup

Queries 1 and 6 exhibit very good scaling, and BigQuery takes almost the same time to execute the
query irrespective of dataset size. This is because queries 1, 6 are simple scans over the dataset to compute
aggregate values and hence are massively parallelizable. Thus, BigQuery can use many more backend
server nodes to process these two queries. However the runtime of query 2 and 16 increases significantly
with increasing datasize. This is because these two queries are inherently difficult to parallelize as they
include joins over multiple tables and nested subqueries. This shows that BigQuery does an excellent
job at speeding up easily parallelizable queries, however does not scale up queries with complex joins
and subqueries.

While running queries on very large datasets, we frequently encountered "Resources exceeded during

query execution" error in BigQuery. This was usually the case when the query involved joins on mul-
tiple tables and a group by clause. In some cases, we were able to get around the problem by rewriting
the query manually. However, 6 queries still failed to run on the 100GB dataset.

4.4 Comparison

In this subsection, we compare head-to-head the performance of BigQuery and RedShift. By perfor-
mance here, we mean the absolute runtime of a query. As a baseline performance, we run the same
queries on same datasets on a commodity desktop machine running PostgreSQL 9.1 database manage-
ment software. We show the results for TPC-H queries 1 and 2 in Figure 4. We can see several interesting
trends in these figures.

5

 1

 10

 100

 1000

 10000

 1 10 100

Q
ue

ry
 R

un
tim

e
(s

ec
)

Dataset size (GB)

PostgreSQL
BigQuery

RedShift 1 Node (Cold)
RedShift 1 Node (Hot)

Redshift 8 Node (Cold)

(a) TPC-H Query 1

 1

 10

 100

 1000

 1 10 100

Q
ue

ry
 R

un
tim

e
(s

ec
)

Dataset size (GB)

BigQuery
RedShift 1 Node (Cold)
RedShift 1 Node (Hot)

Redshift 8 Node (Cold)

(b) TPC-H Query 2

Figure 4: Comparison of query runtimes for different platforms

First, as expected both BigQuery and Redshift are much faster than baseline PostgreSQL and the
difference increases as we increase the dataset size. For TPC-H query 1 (massively parallelizable) Fig-
ure 4(a), we see that BigQuery clearly outperforms RedShift (with 1 node, as well as 8 nodes). Even the
hot cache performance of RedShift is inferior to BigQuery. This is probably because BigQuery engine
uses servers proportional to datasize to solve the massively parallel query.

Figure 4(b) shows the same plots for TPC-H query 2, and here the trends are very different. For
smaller dataset sizes, BigQuery is faster that RedShift. However as we increase the datasize, RedShift
outperforms BigQuery easily. This is because TPC-H query 2 is inherently difficult to parallelize and has
multiple joins and nested subqueries. RedShift does a much better job at scaling up complex queries, as
compared to RedShift. It should be noted here that BigQuery is not designed to handle such complex
queries (with multiple joins). It expects the data to be nested in itself as described in [7].

We also see some cache effects (difference in the lines hot, cold in Figure 4) in RedShift, and running the
same query (with different parameters) on small datasets resulted in very fast query runtimes. However
these effects disappeared with increasing dataset size as expected.

4.5 Pricing

BigQuery and Redshift use very different pricing schemes. While Googles BigQuery charges per unit
of data processed, Amazons Redshift charges per hour per node. Depending on the queries, there might
be advantages and disadvantages to both the schemes. In Figure 5(a) we computed the cost charged
by the two systems on two queries, Q1 qnd Q2, executed on different data sizes. The graph shows that
the prices are very fluctuant, depending a lot on the query characteristics. While Q1 touches the bigest
table used in the TPC-H schema, i.e. lineitem, Q2 only touches the small tables. Therefore, BigQuery
charges more than Amazon Redshift for Q1. Even though Q2 processes less amount of data, it is fast
enough to be charged less by Redshift. In Figure 5(b) we computed the value per money. For Redshift’s
run of Q1 it is noticeable how the value per money fluctuates, while for the others it is either decreasing
or increasing. It would be interesting, for future work, to explore whether we could construct a learning
algorithm or use static analysis of the query to decide on which system a query will give better value per
money.

5 Conclusions

In this project, we ran TPC-H benchmark queries on two popular cloud based data processing services:
Google BigQuery and Amazon RedShift. Based on the results and our own experiences using these
services, we have identified the several advantages and disadvantages of both these services. BigQuery
is very easy to setup and run queries and does not require any manual configuration of clusters; it
automatically scales up according the dataset size. But this can be a disadvantage as well, since the user
cannot tune the system according to his/her needs. However it has limited SQL language support and
does not scale up well on complex queries involving multiple joins and nested subqueries.

6

 0.1

 1

 10

 100

 1 10 100

Q
ue

ry
 C

os
t (

ce
nt

s)

Dataset size (GB)

BigQuery Query 1
RedShift Query 1

BigQuery Query 2
RedShift Query 2

(a) Cost of running a single query in cents

 0

 0.5

 1

 1.5

 2

 2.5

 1 10 100

V
al

ue
 fo

r
M

on
ey

Dataset size (GB)

BigQuery Query 1
RedShift Query 1

BigQuery Query 2
RedShift Query 2

(b) Value for money of running a single query

Figure 5: Pricing comparison between BigQuery and Redshift

RedShift on the other hand is almost fully SQL compatible, and all TPC-H queries run without any
modification. However, it requires setting up and managing the cluster on which queries are run. This
might be sligtly difficult for users with limited background on such services. But this is a good feature
for expert users, as it allows them to tune their cluster according to their requirements.

References

[1] TPC http://www.tpc.org

[2] Google BigQuery https://developers.google.com/bigquery/

[3] Google CloudSQL https://developers.google.com/cloud-sql/

[4] Microsoft Azure SQL http://www.windowsazure.com/en-us/manage/services/sql-databases/

[5] Amazon Dynamo http://aws.amazon.com/dynamodb/

[6] Amazon Redshift http://aws.amazon.com/redshift/

[7] Melnik et al. Dremel: interactive analysis of web-scale datasets. VLDB 2010.

[8] Shi et al. Benchmarking cloud-based data management systems. CloudDB 2010.

7

6 Appendix

Q2

SQL BigQuery

se lect

s a c c tba l ,
s name ,
n name ,
p partkey ,
p mfgr ,
s addres s ,
s phone ,
s comment

from

part ,
supp l i e r ,
partsupp ,
nation ,
r eg ion

where

p partkey = ps partkey
and s suppkey = ps suppkey
and p s i z e = 42
and p type l ike ’%STEEL ’
and s nat ionkey = n nat ionkey
and n reg ionkey = r r eg i onkey
and r name = ’AMERICA’
and ps supp lycos t = (

se lect

min(p s supp lycos t)
from

partsupp ,
supp l i e r ,
nation ,
r eg ion

where

p partkey = ps partkey
and s suppkey = ps suppkey
and s nat ionkey = n nat ionkey
and n reg ionkey = r r eg i onkey
and r name = ’AMERICA’)

order by

s a c c t b a l desc ,
n name ,
s name ,
p partkey ;

se lect

s a c c tba l , s name , n name ,
p partkey , p mfgr , p s i z e ,
p type , s addres s , s phone ,
r name , s comment

from

(se lect

s a c c tba l , s name , n name ,
p partkey , p mfgr , p s i z e ,
p type , s addres s , s phone ,
r name , ps supplycost , s comment

from

(se lect

p partkey , p mfgr ,
p name , p s i z e , p type ,
ps suppkey , n name , n reg ionkey ,
s name , s a cc tba l , s addres s ,
s phone , ps supplycost , s comment

from

(se lect

p partkey , p mfgr , p name ,
p s i z e , p type , ps suppkey ,
ps supplycost , s addres s ,
s phone , s comment , s a c c tba l ,
s nat ionkey , s name

from

(se lect

p partkey , p mfgr , p name ,
p s i z e , p type , ps suppkey ,
p s supp lyco s t

from TPCH10. part as T1
JOIN EACH TPCH10. partsupp AS T2
ON T1 . p partkey = T2 . ps partkey) AS T3

JOIN EACH TPCH10. s upp l i e r AS T4
ON T3 . ps suppkey = T4 . s suppkey) AS T5

JOIN EACH TPCH10. nat ion AS T6
ON T5 . s nat ionkey = T6 . n nat ionkey) AS T7

JOIN EACH TPCH10. r eg ion AS T8
ON T7 . n reg ionkey = T8 . r r eg i onkey) AS T9

JOIN EACH (se lect

min(p s supp lyco s t) AS min ps supplycost ,
ps partkey

from

(se lect

ps supplycost , ps partkey , n reg ionkey
from

(se lect

ps supplycost , ps partkey , s nat ionkey
from

(se lect

ps suppkey , ps partkey , p s supp lyco s t
from TPCH10. partsupp) AS T03

JOIN EACH TPCH10. s upp l i e r AS T04
ON T03 . ps suppkey = T04 . s suppkey) AS T05

JOIN EACH TPCH10. nat ion AS T06
ON T05 . s nat ionkey = T06 . n nat ionkey) AS T07

JOIN EACH TPCH10. r eg ion AS T08
ON T07 . n reg ionkey = T08 . r r eg i onkey

where r name = ’AMERICA’
GROUP EACH BY ps partkey) AS T10

ON T9 . ps supp lycos t = T10 . min ps supplycost
and T9 . p partkey = T10 . ps partkey

where

p s i z e = 42
and REGEXP MATCH(p type , ’ .∗STEEL ’)
and r name = ’AMERICA’

order by

s a c c t b a l desc ,
n name ,
s name ,
p partkey ;

8

Q3

SQL BigQuery

se lect

l o rde rkey ,
sum(l e x t endedp r i c e ∗ (1 − l d i s c oun t)) as revenue ,
o orderdate ,
o s h i p p r i o r i t y

from

customer ,
orders ,
l i n e i t em

where

c mktsegment = ’MACHINERY’
and c cus tkey = o custkey
and l o rd e rk ey = o orderkey
and o orderdate < 795427200
and l s h i pda t e > 795427200

group by

l o rde rkey ,
o orderdate ,
o s h i p p r i o r i t y

order by

revenue desc ,
o o rde rdate ;

se lect

t3 . l o rderkey ,
sum(t3 . l e x t endedp r i c e ∗ (1 − t3 . l d i s c oun t))

as revenue ,
j1 . t2 . o orderdate ,
j1 . t2 . o s h i p p r i o r i t y

from

(se lect

t1 . c mktsegment ,
t2 . o orderkey ,
t2 . o orderdate ,
t2 . o s h i p p r i o r i t y

from TPCH10. customer as t1
JOIN EACH TPCH10. o rder s as t2
ON t1 . c cus tkey = t2 . o custkey) as j 1

JOIN EACH TPCH10. l i n e i t em as t3
ON t3 . l o rd e rk ey = j1 . t2 . o orderkey

where

j 1 . t1 . c mktsegment = ’MACHINERY’
and j 1 . t2 . o o rderdate < 795427200
and t3 . l s h i pda t e > 795427200

group by

t3 . l o rderkey ,
j1 . t2 . o orderdate ,
j1 . t2 . o s h i p p r i o r i t y

order by

revenue desc ,
j 1 . t2 . o o rderdate ;

Q5

SQL BigQuery

se lect

n name ,
sum(l e x t endedp r i c e ∗ (1 − l d i s c oun t)) as revenue

from

customer ,
orders ,
l ine i t em ,
supp l i e r ,
nation ,
r eg ion

where

c cus tkey = o custkey
and l o rd e rk ey = o orderkey
and l suppkey = s suppkey
and c nat ionkey = s nat ionkey
and s nat ionkey = n nat ionkey
and n reg ionkey = r r eg i onkey
and r name = ’EUROPE’
and o orderdate >= 725875200
and o orderdate < 725875200 + 31556926

group by

n name
order by

revenue desc ;

se lect

j 4 . j 3 . j 2 . j 1 . t2 . n name ,
sum(t6 . l e x t endedp r i c e ∗ (1 − t6 . l d i s c oun t)) as revenue

from

(se lect

t5 . o orderdate ,
t5 . o orderkey ,
j3 . j 2 . t3 . s suppkey ,
j3 . j 2 . j 1 . t2 . n name ,
j3 . j2 . j 1 . t1 . r name

from

(se lect

t4 . c custkey ,
j2 . t3 . s suppkey ,
j2 . j 1 . t2 . n name ,
j2 . j1 . t1 . r name

from

(se lect

t3 . s nat ionkey ,
t3 . s suppkey ,
j1 . t2 . n name ,
j1 . t1 . r name

from

(se lect

t2 . n name ,
t2 . n nationkey ,
t1 . r name

from TPCH10. r eg ion AS t1
JOIN EACH TPCH10. nat ion as t2
ON t1 . r r eg i onkey = t2 . n reg ionkey) AS j 1

JOIN EACH TPCH10. s upp l i e r as t3
ON t3 . s nat ionkey = j1 . t2 . n nat ionkey) AS j 2

JOIN EACH TPCH10. customer as t4
ON t4 . c nat ionkey = j2 . t3 . s nat ionkey) AS j 3

JOIN EACH TPCH10. o rder s as t5
ON t5 . o custkey = j3 . t4 . c cus tkey) AS j 4

JOIN EACH TPCH10. l i n e i t em as t6
ON t6 . l o rd e rk ey = j4 . t5 . o orderkey

and t6 . l suppkey = j4 . j3 . j 2 . t3 . s suppkey

where

j 4 . j 3 . j 2 . j 1 . t1 . r name = ’EUROPE’
and j 4 . t5 . o o rderdate >= 725875200
and j 4 . t5 . o o rderdate < 725875200 + 31556926

group by

j 4 . j 3 . j 2 . j 1 . t2 . n name
order by

revenue desc ;

9

Q7

SQL BigQuery

se lect

supp nation ,
cus t nat ion ,
l y ea r ,
sum(volume) as revenue

from

(se lect

n1 . n name as supp nation ,
n2 . n name as cust nat ion ,
f l o o r (l s h i pda t e /3600/24/365.25) as l y ea r ,
l e x t endedp r i c e ∗ (1 − l d i s c oun t) as volume

from

supp l i e r ,
l ine i t em ,
orders ,
customer ,
nat ion n1 ,
nat ion n2

where

s suppkey = l suppkey
and o orderkey = l o rd e rk ey
and c cus tkey = o custkey
and s nat ionkey = n1 . n nat ionkey
and c nat ionkey = n2 . n nat ionkey
and (

(n1 . n name = ’EGYPT’
and n2 . n name = ’ETHIOPIA ’)

or (n1 . n name = ’ETHIOPIA ’
and n2 . n name = ’EGYPT’)

)
and l s h i pda t e >= 788947200
and l s h i pda t e <= 852019200

) as sh ipp ing
group by

supp nation ,
cus t nat ion ,
l y e a r

order by

supp nation ,
cus t nat ion ,
l y e a r ;

se lect

supp nation ,
cus t nat ion ,
l y ea r ,
sum(volume) as revenue

from

(se lect

n1 name as supp nation ,
n2 name as cust nat ion ,
f l o o r (l s h i pda t e /3600/24/365.25) as l y ea r ,
l e x t endedp r i c e ∗ (1 − l d i s c oun t) as volume

from

(se lect

l s h ipda t e , l ex t endedpr i c e , l d i s count ,
n1 name , n name as n2 name

from

(se lect

l s h ipda t e , l ex t endedpr i c e , c nat ionkey ,
l d i s c ount , n name as n1 name

from

(se lect

l s h ipda t e , l ex t endedpr i c e , s nat ionkey ,
c nat ionkey , l d i s c oun t

from

(se lect

o custkey , l sh ipda t e ,
l ex t endedpr i c e , s nat ionkey ,
l d i s c oun t

from

(se lect

l o rderkey , l sh ipda t e ,
l ex t endedpr i c e , s nat ionkey ,
l d i s c oun t

from TPCH10. s upp l i e r as T1
JOIN EACH TPCH10. l i n e i t em as T2
ON T1 . s suppkey = T2 . l suppkey) as T3

JOIN EACH TPCH10. o rder s as T4
ON T3 . l o rd e rk ey = T4 . o orderkey) as T5

JOIN EACH TPCH10. customer as T6
ON T5 . o custkey = T6 . c cus tkey) as T7

JOIN EACH TPCH10. nat ion as T8
ON T7 . s nat ionkey = T8 . n nat ionkey) as T9

JOIN EACH TPCH10. nat ion as T10
ON T9 . c nat ionkey = T10 . n nat ionkey) as T11

where (
(n1 name = ’EGYPT’ and n2 name = ’ETHIOPIA ’)
or (n1 name = ’ETHIOPIA ’ and n2 name = ’EGYPT’)
)
and (
l s h i pda t e >= 788947200 and l s h i pda t e <= 852019200
)

) as sh ipp ing
group by

supp nation ,
cus t nat ion ,
l y e a r

order by

supp nation ,
cus t nat ion ,
l y e a r ;

10

Q9

SQL BigQuery

se lect

nation ,
o year ,
sum(amount) as sum pro f i t

from

(se lect

n name as nation ,
f l o o r (o orderdate /3600/24/365.25) as o year ,
l e x t endedp r i c e ∗ (1 − l d i s c oun t)

− ps supp lyco s t ∗ l q uan t i t y as amount
from

part ,
supp l i e r ,
l ine i t em ,
partsupp ,
orders ,
nat ion

where

s suppkey = l suppkey
and ps suppkey = l suppkey
and ps partkey = l pa r tk ey
and p partkey = l pa r tk ey
and o orderkey = l o rd e rk ey
and s nat ionkey = n nat ionkey
and p name l ike ’%papaya%’

) as p r o f i t
group by

nation ,
o year

order by

nation ,
o year desc ;

se lect

nation ,
o year ,
sum(amount) as sum pro f i t

from

(se lect

n name as nation ,
f l o o r (o orderdate /3600/24/365.25) as o year ,
l e x t endedp r i c e ∗ (1 − l d i s c oun t)

− ps supp lycos t ∗ l q uan t i t y as amount
from

(se lect

l ex t endedpr i c e , l quant i ty ,
o orderdate , ps supplycost ,
l d i s c ount , p name , n name
from

(se lect

l ex t endedpr i c e , l quant i ty ,
s nat ionkey , o orderdate ,
ps supplycost , p name , l d i s c oun t

from

(se lect

l ex t endedpr i c e , l quant i ty ,
l o rderkey , s nat ionkey ,
ps supplycost , p name , l d i s c oun t

from

(se lect

l suppkey , l par tkey ,
l ex t endedpr i c e , l quant i ty ,
l o rderkey , s nat ionkey ,
p name , l d i s c oun t

from

(se lect

l suppkey , l par tkey ,
l ex t endedpr i c e , l quant i ty ,
l o rderkey , s nat ionkey , l d i s c oun t

from TPCH10. s upp l i e r as T1
JOIN EACH TPCH10. l i n e i t em as T2
ON T1 . s suppkey = T2 . l suppkey) as T3

JOIN EACH TPCH10. part as T4
ON T3 . l pa r tk ey = T4 . p partkey) as T5

JOIN EACH TPCH10. partsupp as T6
ON T5 . l pa r tk ey = T6 . ps partkey

and T5 . l suppkey = T6 . ps suppkey) as T7
JOIN EACH TPCH10. o rder s as T8
ON T7 . l o rd e rk ey = T8 . o orderkey) as T9

JOIN EACH TPCH10. nat ion as T10
ON T9 . s nat ionkey = T10 . n nat ionkey

where

p name conta ins ’ papaya ’
) as T11

) as p r o f i t
group by

nation ,
o year

order by

nation ,
o year desc ;

11

Q10

SQL BigQuery

se lect

c custkey ,
c name ,
sum(l e x t endedp r i c e ∗ (1 − l d i s c oun t))

as revenue ,
c acc tba l ,
n name ,
c address ,
c phone ,
c comment

from

customer ,
orders ,
l ine i t em ,
nat ion

where

c cus tkey = o custkey
and l o rd e rk ey = o orderkey
and o orderdate >= 754732800
and o orderdate < 754732800 + 7889229
and l r e t u r n f l a g = ’R ’
and c nat ionkey = n nat ionkey

group by

c custkey ,
c name ,
c acc tba l ,
c phone ,
n name ,
c address ,
c comment

order by

revenue desc ;

se lect

c custkey , c name ,
sum(l e x t endedp r i c e ∗ (1 − l d i s c oun t))

as revenue ,
c acc tba l , n name , c address ,
c phone , c comment

from

(se lect

c custkey , c name , n name ,
c acc tba l , c address , c phone ,
c comment , l ex t endedpr i c e , l d i s c oun t

from

(se lect

c custkey , c name , c acc tba l ,
c address , c phone , c comment ,
c nat ionkey , l ex t endedpr i c e ,
l d i s c oun t

from

(se lect

c custkey , c name , c acc tba l ,
c address , c phone , c comment ,
c nat ionkey , o orderkey

from TPCH10. customer as T1
JOIN EACH TPCH10. o rder s as T2
ON T1 . c cus tkey = T2 . o custkey

where o orderdate >= 754732800
and o orderdate < 754732800 + 7889229

) as T3
JOIN EACH TPCH10. l i n e i t em as T4
ON T3 . o orderkey = T4 . l o rd e rk ey
where T4 . l r e t u r n f l a g = ’R ’) as T5

JOIN EACH TPCH10. nat ion as T6
ON T5 . c nat ionkey = T6 . n nat ionkey) as T7

group by

c custkey ,
c name ,
c acc tba l ,
c phone ,
n name ,
c address ,
c comment

order by

revenue desc ;

Q13

SQL BigQuery

se lect

c count ,
count (∗) as cu s t d i s t

from

(se lect

c custkey ,
count (o orderkey)

from

customer l e f t outer join order s on

c cus tkey = o custkey
and o comment not l ike ’%expres s%accounts%’

group by

c cus tkey
) as c o rd e r s (c custkey , c count)

group by

c count
order by

c u s t d i s t desc ,
c count desc ;

se lect

f2 ,
count (∗) as cu s t d i s t

from

(se lect

t1 . c cus tkey as f1 ,
count (t2 . o orderkey) as f 2

from TPCH10. customer AS t1
LEFT OUTER JOIN EACH TPCH10. o rder s AS t2
ON t1 . c cus tkey = t2 . o custkey

where

NOT REGEXP MATCH(t2 . o comment , ’ .∗ expre s s .∗ accounts .∗ ’)
group by

f 1
)

group by

f 2
order by

cu s t d i s t desc ,
f 2 desc ;

12

Q16

SQL BigQuery

se lect

p brand ,
p type ,
p s i z e ,
count (dist inct ps suppkey) as s upp l i e r c n t

from

partsupp ,
part

where

p partkey = ps partkey
and p brand <> ’ Brand#41 ’
and p type not l ike ’PROMO BRUSHED%’
and p s i z e in (15 , 46 , 47 , 34 , 9 , 22 , 17 , 43)
and ps suppkey not in

(se lect

s suppkey
from

s upp l i e r
where

s comment l ike ’%Customer%Complaints%’
)

group by

p brand ,
p type ,
p s i z e

order by

s upp l i e r c n t desc ,
p brand ,
p type ,
p s i z e ;

se lect

p brand ,
p type ,
p s i z e ,
count (dist inct ps suppkey) as s upp l i e r c n t

from TPCH10. partsupp AS t1
JOIN EACH TPCH10. part AS t2
ON t2 . p partkey = t1 . ps partkey

where

p brand <> ’ Brand#41 ’
and NOT REGEXP MATCH(p type , ’PROMO BRUSHED.∗ ’)
and p s i z e in (15 , 46 , 47 , 34 , 9 , 22 , 17 , 43)
and ps suppkey not in

(se lect

s suppkey
from

TPCH10. s upp l i e r
where

REGEXP MATCH(s comment , ’ .∗ Customer .∗ Complaints .∗ ’)
)

group by

p brand ,
p type ,
p s i z e

order by

s upp l i e r c n t desc ,
p brand ,
p type ,
p s i z e ;

Q17

SQL BigQuery

se lect

sum(l e x t endedp r i c e) / 7 .0 as avg year ly
from

l ine i t em ,
part

where

p partkey = l pa r tk ey
and p brand = ’Brand#42 ’
and p conta ine r = ’MED DRUM’
and l q uan t i t y <

(se lect

0 .2 ∗ avg (l quan t i t y)
from

l i n e i t em
where

l p a r tk ey = p partkey
) ;

se lect

sum(j1 . t1 . l e x t endedp r i c e) / 7 .0 as avg year ly
from

(se lect

t1 . l quant i ty , t1 . l ex t endedpr i c e ,
t2 . p partkey , t2 . p brand ,
t2 . p conta ine r

from TPCH10. l i n e i t em AS t1
JOIN EACH TPCH10. part AS t2
ON t2 . p partkey = t1 . l pa r t k ey) AS j 1

JOIN EACH
(se lect

l par tkey , 0 .2 ∗ avg (l quan t i t y) as average
from TPCH10. l i n e i t em
GROUP EACH BY l p a r tk ey) as j 2

ON j 1 . t2 . p partkey = j2 . l pa r tk ey
where

j 1 . t2 . p brand = ’Brand#42 ’
and j 1 . t2 . p conta ine r = ’MED DRUM’
and j 1 . t1 . l quan t i t y < j 2 . average ;

13

Q18

SQL BigQuery

se lect

c name ,
c custkey ,
o orderkey ,
o orderdate ,
o t o t a l p r i c e ,
sum(l quan t i t y)

from

customer ,
orders ,
l i n e i t em

where

o orderkey in

(se lect

l o rd e rk ey
from

l i n e i t em
group by

l o rd e rk ey
having

sum(l quan t i t y) > 315
)

and c cus tkey = o custkey
and o orderkey = l o rde rk ey

group by

c name ,
c custkey ,
o orderkey ,
o orderdate ,
o t o t a l p r i c e

order by

o t o t a l p r i c e desc ,
o o rderdate ;

se lect

c name ,
c custkey ,
o orderkey ,
o orderdate ,
o t o t a l p r i c e ,
sum(l quan t i t y)

from

(se lect

c name , c custkey ,
o orderkey , o orderdate ,
o t o t a l p r i c e , l quan t i t y

from

(se lect

c name , c custkey ,
o orderkey , o orderdate ,
o t o t a l p r i c e

from TPCH10. customer as T1
JOIN EACH TPCH10. o rder s as T2
ON T1 . c cus tkey = T2 . o custkey) as T3

JOIN EACH TPCH10. l i n e i t em as T4
ON T3 . o orderkey = T4 . l o rd e rk ey) as T5

where

o orderkey in

(se lect

l o rd e rk ey
from

(se lect

l o rderkey , sum(l quan t i t y)
from

TPCH10. l i n e i t em
group each by

l o rd e rk ey
having

sum(l quan t i t y) > 315
)

)
group each by

c name ,
c custkey ,
o orderkey ,
o orderdate ,
o t o t a l p r i c e

order by

o t o t a l p r i c e desc ,
o o rde rdate ;

14

