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Introduction

Analyzing player data from our lab’s (the Center for
Game Science) educational games at a large scale is
an important component of many ongoing research
efforts. Several such projects [1, 4, 7, 5] involve com-
puting complex features on data from as many as sev-
eral thousand players. Currently, due to the complex-
ity of the features we need to compute, such analysis
is done ad hoc with hard-coded scripts or programs,
in languages such as Python or Java. While it would
be desirable to move this computation into a database
system, such queries are cumbersome or even impos-
sible to express in SQL. In this project, we explore the
use of Datalog, in particular LogicBlox [2], to deter-
mine whether it can concisely express and efficiently
compute the kinds of queries we need. We draw on
previous work [7] for example queries, and write a
DataloglB (Datalog for LogicBlox) program to com-
pute them. Originally, the queries were computed
with a hand-coded system written in a mix of Python,
Scala, and Answer-Set Prolog, the bulk of the system
and computation being in Scala. The rest of the pa-
per is as follows: we first discuss background and
related work and then describe the Datalog program
we created. We then define the queries we wish to
answer and evaluate our system using those queries.
Our evaluation has three components. First, we mea-
sure how the Datalog program performs as the data
size increases, looking at a dataset with 10,000 play-
ers. We then compare this performance to that of
our existing system. Lastly, we discuss qualitatively
the ease of writing programs and expressing queries
in both systems.

Background and Related Work

The game on which we will be computing queries is
Refraction, an educational fractions game that in-
volves splitting lasers into fractional amounts. The
player interacts with a grid that contains laser
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Figure 1: A level of Refraction.

sources, target spaceships, and asteroids, as shown in
Figure 1. The goal is to satisfy the target spaceships
(each one desires a specific fractional laser value) and
avoid asteroids by placing pieces on the grid. Some
pieces change the laser direction and others split the
laser into two or three equal parts. To win, the player
must correctly satisfy all targets at the same time.

There is a large body of previous work on game
analytics. Much of this work focuses on systems for
visual exploration and analysis, emphasizing aspects
such as investigating player experience [3]|, under-
standing numerical data [6], or representing players’
paths through the game [1, 10]. Our project aims to
facilitate asking such sophisticated queries at scale,
and we leave improving the accessibility and discov-
erability of our system as future work.

Our lab uses hard-coded programs for the vast ma-
jority of feature computation and analytics. There is
a lack of information on the processes typical game
studios in the industry use for analytics; however,
publications such as those about Microsoft’s in-house
game data analytics group [3] and the analytics tool
for Electronic Arts’ game Dead Space 2 [6] indicate



that most of the computation happens outside of
the database system. While general purpose pro-
gramming languages have the expressiveness for our
queries, there are two obvious drawbacks. First, per-
formance becomes a serious issue at scale. When the
data needing to be processed no longer fits in main
memory, programs to effectively process this data be-
come quite complicated. Second, and rather more
importantly, exploration of new features is a slow it-
erative process. Slightly adjusting a query requires
modifying a large program, recompiling, and redo-
ing much of the computation. Among their many
uses, database systems are effective at overcoming
precisely these two problems.

Although our player data starts in a SQL database,
we do not use SQL for much of the analysis. This is
primary because it is difficult to get the expressive-
ness we need within SQL; many of the features we
look at require simulation of the game. For example,
in Refraction, we care about counting the number
of unique “game states” a particular player traversed
during a playthrough. This requires simulating the
game, which requires recursion to compute the flow of
lasers throughout the board. Not only is this difficult
to express in SQL, such games may even be outside
of the complexity class expressible by standard SQL.
For games such as Light-Bot (Coolio Niato 2008) and
SpaceChem (Zachtronics Industries 2001) this simula-
tion approaches a P-complete problem: they require
simulating a player-designed machine for a bounded
number of steps. Even with extensions to SQL that
support such complexity, the language does not lend
itself well to concisely expressing the large, complex
set of rules.

The work of White et al. [11] has tried to sim-
ulate games in a database context, using a custom
language to overcome the verbosity of SQL. They
propose a declarative scripting language called Scal-
able Game Language (SGL) that compiles down to
SQL. SGL requires designers to implement the game
logic according to a “state-effect” design pattern such
that the state of each game object is updated once
at the end of each simulation loop by aggregating all
the independent effects applied during a prior “query
phase.” It is this separation that allows SGL to pro-
vide an order of magnitude better performance. This

Type Ins. Outs. | Description

Source 1 Emits lasers

Target 1to4 Must satisfy to win

Bender 1 1 Bends laser 1/4 turn
Splitter 1 2 or 3 | Equally splits lasers
Combiner | 2 0or 3 | 1 Sums lasers

Blocker Obstructs all lasers

Table 1: The different piece types of Refraction.

system does not capture the expressiveness necessary
to simulate Refraction, however, and is thus not suit-
able for our purposes.

Logic programming is a more expressive language
that makes representing deductive rules straightfor-
ward. In fact, our lab has had success using Answer-
Set Prolog (ASP), a variant of Prolog for answer-
set programming, to generate levels for Refraction
[9, 8]. The answer-set program contains, in Prolog-
like rules, the logic required to simulate Refraction.
However, ASP is designed for model checking and
satisfiability of small domains, and is not suitable for
computation on the scale of thousands of players and
millions of actions.

It is thus natural to try to use Datalog for our
queries. If a Datalog program could concisely ex-
press the rules needed to simulate Refraction, then
perhaps many of our queries could be computed en-
tirely within a database system.

System Description

Data Schema and Description

The particular dataset we are using consists of
player data from the version of the game on the Flash
game portal Kongregate!. The full dataset contains
approximately 15,000 players, 400,000 levels played
(which we call traces), and 15,000,000 actions on
those traces. We used a subset of three levels that
contained 200,359 actions.

Listing 1 shows the schema for our extensional data
in Datalogl'® syntax. This data is broken down into
two hierarchies: level data and player data. The level

1http ://www.kongregate. com/



data describe, for each level in the game, which pieces
are available in each level and their attributes. Pieces
are grouped into different types, which are described
in Table 1.

Player data is broken into several tables. At the
lowest level are actions, which are the individual ac-
tions performed in levels, such as picking up a piece.
Above this are traces, which group actions into an
instance of a particular player playing a particular
level. Above this are sessions, which group traces
into play sessions, and at the top are players.

Level(l), hasLevelId(l:i) -> uint[32](i).

BoardLocation(bl), hasLocation(bl:i) -> uint[8](i).
bl:x0f[bl] = x -> BoardLocation(bl), uint[8] (x).
bl:y0f[bl] = y -> BoardLocation(bl), uint[8](y).

Direction(d), hasDirectionName(d:s) -> string(s).
d:axis0f[d] = i -> Direction(d), uint[8](i).
d:sign0f [d] i -> Direction(d), int[8]1(i).

Fraction(f), hasFractionRepr(f:s) -> string(s).

f:num0f [f] = n -> Fraction(f), uint[8](n).
f:den0f[f] = d -> Fraction(f), uint[8](d).
Piece(p) -> .

piece:levelOf [p] = 1 -> Piece(p), Level(l).

piece:tagOf [p] = tag -> Piece(p), string(tag).
piece:1d0f [p] = id -> Piece(p), uint[8](id).
piece:input(p, d) -> Piece(p), Direction(d).

piece:
piece:

output (p, d) -> Piece(p), Direction(d).
valueOf [p] = f -> Piece(p), Fraction(f).

SourcePiece(p) -> Piece(p).
TargetPiece(p) -> Piece(p).
BlockerPiece(p) -> Piece(p).
BenderPiece(p) -> Piece(p).
SplitterPiece(p) -> Piece(p).
CombinerPiece(p) -> Piece(p).

Player(p), hasPlayerId(p:s) -> string(s).

Session(s), hasSessionId(s:i) -> string(i).
session:player0f[s] = p -> Session(s), Player(p).

Trace(t), hasTraceId(t:s) -> string(s).
trace:session0f[t] = s -> Trace(t), Session(s).
trace:levelOf[t] = 1 -> Trace(t), Level(l).

Action(a), hasActionId(a:s) -> uint[32](s).
action:traceOf[a] = t -> Action(a), Trace(t).
action:seqIndex0f[a] = i -> Action(a), uint[16](i).
action:typeOf[a] = s -> Action(a), string(s).

action:timeMillisOf[a] = t -> Action(a), uint[32](t).
action:pieceId0f[a] = pid -> Action(a), uint[8] (pid).
action:locOf[a] = bl -> Action(a), BoardLocation(bl).

StartAction(a) -> Action(a).
PickupAction(a) -> Action(a).
DropInBinAction(a) -> Action(a).
DropOnBoardAction(a) -> Action(a).
ResetAction(a) -> Action(a).

Listing 1: The schema for our EDB. It is primarily
broken in two categories: level data and player data.

Queries

Before defining the three queries we ran, we discuss
the common elements between them: simulating the
game rules of Refraction.

Recursively Computing States

For all of our queries, an intentional table for states
must be computed. This consists of several compo-
nents, many recursively defined. First, player ac-
tions must be recursively simulated to compute a
pieceAt(action, piece, boardloc) relation that
describes where pieces are on the board after each
action. Piece locations define a game state, so we
then associate each action with the game state it en-
genders. Once we have states, we compute several
features on them. The most complex part of this
computation is constructing the laser graph for each
state. The laser graph describes the fraction-valued
lasers currently on the board. Starting with source
pieces, the lasers must be pushed around the board
to the remaining pieces, which requires multiple re-
cursions. Construction of this laser graph a primary
reason hard-coded programs have been required in
the past. We include part of the Datalogl® code for
this computation in Listing 2.

outEdge(s, p, dir) <-
SourcePiece(p),
isPieceOfState(s, p),
piece:output(p, dir).

movinglaser(s, p, bl, dir) <-
outEdge(s, p, dir),
pieceAt[s, p] = bl.

laserReaches(s, p, bl, dir) <-
movinglaser(s, p, blold, dir),



nextCell[blold, dir] = bl.
movinglaser(s, p, bl, dir) <-
laserReaches(s, p, bl, dir),
'isCellOccupied(s, bl).
dirEdge(s, pout, pin, dir) <-
piece:input(pin, opdir),
oppositeOf [dir] = opdir,
laserReaches(s, pout, bl, dir),
pieceAt[s, pin] = bl.
edge(s, pout, pin) <-
dirEdge(s, pout, pin, _).
outEdge(s, p, dir) <-
edge(s, _, p),
piece:output(p, dir).

Listing 2: The recursively-defined edge rela-
tion, part of the code that computes the “laser
graph” for each game state s. The output
is edge(state, piece_out, piece_in), which de-
scribes which pieces’ outputs and inputs are con-
nected on the game board. The system computes this
by, starting with source pieces, recursively pushing
lasers around the board until the reach the input of
another piece.

With this supporting structure in place, we were able
to compute three sophisticated queries of interest.

The Three Queries

1. For each trace, what was the ratio of unique
states to total states? We have previously iden-
tified this metric as an important feature for player
prediction. To compute it, we count number of dis-
tinct states in a given trace and divide by the total
number of states for that trace.

However, we want to look at a particular represen-
tation of states, a feature we call the fringe lasers.
The fringe lasers of a given state are the set of
lasers that are not being correctly used as the in-
put of any piece on the game board. For each state,
we define a relation fringelLaser(state, piece,
direction, fraction) that has an entry for every
fringe laser value on the board. Note that multiple
fringe lasers with the same value may exist, so the
piece and direction are included in the relation to
allow for the equivalent of bag semantics.

When selecting the count of distinct states, we
must not double count states that have the same bag

of fringe laser values. To address this we wrote an
equivalence relation using the fringeLaser predicate
and some additional rules to count the number of
equivalence classes. This code is shown in Listing 3.

// starting with an equivalence relation,
// we must compute equivalence classes
equalStates(sl, s2) -> State(sl), State(s2).

// do this by choosing a canonical

// representative of each class via

// an arbitrary ordering

better(sl, s2) <- sl < s2, equalStates(sl, s2).
best(s) <- State(s), !better(s, _).
canonicalStateO0f[s1] = s2 <- better(sl, s2), best(s2).

canonicalState0fTrace(t, canonicalStateOf[s]) <-
action:state0f[a] = s, action:traceOf[al = t.

numUniqueStates[t] = cnt <-
agg<<cnt = count()>> canonicalStateOfTrace(t, _).
numActions([t] = cnt <-
agg<<cnt = count()>> action:traceOf[_] = t.
proportionUnique[t] =
uint32:float32:convert[u] /
uint32:float32:convert[a] <-
numUniqueStates[t] = u, numActions[t] = a.

Listing 3: The definition of proportionUnique (t,
p), the final part of the query for proportion unique
states. Stating from an equivalence relation, we must
count the number of equivalence classes in each trace.
We accomplished this by imposing an arbitrary total
ordering on states and computing a “canonical” state
for an equivalence class to be the “largest” state in
that class. We can then count the number of distinct
canonical states to compute proportion unique.

We will call this query the proportion unique query.

2 and 3. How often does the player make
mathematical mistakes? One major goal of the
game is to estimate whether students are improving
at math. One subgoal is to estimate when students
make mathematical mistakes, which we can do by
computing the erroneous game states a player visits.
The following queries are concerned with two possible
definitions of erroneous states.

In the first query, we define an erroneous state as
one where there exists at least one target with an



input laser of the incorrect value. We will call this
the wrong sinks query.

For the second query, we define an erroneous state
as one in which there exists a target such that that
target cannot be satisfied with the remaining fringe
lasers and splitter pieces. For example, suppose the
targets are 1/9 and 1/6 and the source laser is 1/1. If
the player splits the laser in 2 halves, then there are
no splitting operations to go from 1/2 to 1/9, so the
state is erroneous. We will call this the bad splitters

query.

Evaluation and Discussion

We have implemented a functional analytics system
in DatalogLB to compute the answers to the proposed
queries. We have verified our systems accuracy by
comparing the results of our Datalog queries to the
results generated by the previously existing system.
To evaluate our new system, we performed two anal-
yses.

Experimental Performance Results

The first was a quantitative analysis of the perfor-
mance of our datalog queries as a function of the size
of the input. We computed each of the three queries
for three different Refraction levels (50, 53, and 54)
with varying sizes of input. Specifically, we varied
the number of players whose data was imported from
1 player (as a baseline) up to 10,000 players. We
sampled more densely (increments of 50) for player
counts under 500, and more sparely (increments of
100, and then 500) above that. Hence, each data
point corresponds to the running time for a unique
combination of query, level, and input size.

To obtain reliable results, we ran five trials for
each data point, discarded the the highest and low-
est times, and averaged the remaining three times.
Each trial measured the following steps: (1) gener-
ating appropriate csv files from the raw player data,
(2) creating a new database and importing everything
fresh (schema, rules, etc.), (3) importing the player
data into the database, and (4) outputing the query
results.

Using these results, we compared the performance
to that of the original system. Charts showing the
results of this analysis can be found below. For all
queries, it’s clear that our Datalog system performs
far better at scale, with the exception of proportion
unique. In this case, the query has quadratic perfor-
mance, but for the amounts of data typically involved
in an experiment (2,000 - 8,000 players), Datalog still
outperforms the original system. Furthermore, we
expect it would be possible to optimize the propor-
tion unique query substantially. It is true, however,
that additional development effort could be expended
optimizing the original system to the point where
it would outperform Datalog. Hence, the real ad-
vantage becomes apparent when considering perfor-
mance versus development effort. The original sys-
tem was the subject of months of work, whereas our
Datalog system was built over the course of a few
weeks, so in terms of the ratio of performance to de-
velopment effort, the Datalog system is unambigu-
ously superior.

Qualitative Discussion

As our second analysis, we qualitatively discuss the
ease of use of the two systems. Our primary interest is
to answer whether the use of Datalog systems would
help with our research. How much better or worse is
it to use Datalog compared to hand-coded imperative
programs?

Besides performance, the other major benefit we
hope to get from a database system is the ability
to quickly explore and construct queries. Indeed, as
noted above, it took us a significantly shorter amount
of time to construct this system than the original. To
gather some anecdotal evidence from another user,
we asked colleague from our lab who has been di-
rectly involved in several of the studies of player data
to explore Refraction data using our system. He has
been using the original system for over a year to ex-
plore and analyze game data, but had little prior ex-
perience with logic programming.

After a 30-minute crash course in logic program-
ming and the organization of our system, our col-
league began experimenting with queries.  After
about 60 minutes of exploration and refinement, he



had successfully computed a feature of equal com-
plexity to those he had been creating in code. He
wrote a query that found the proportion of actions
where a player put down a piece such that it blocked
a laser, and did not use the laser (i.e., had no input
on the side the laser hit). He built up this query it-
eratively, largely by copying and modifying existing
predicates. While this is only anecdotal evidence,
the speed and relative ease with which our colleague
went from no familiarity with Datalog to computing
a sophisticated query suggests our system could be
effective in facilitating exploration of player data.

Conclusion

The queries our research requires are at a level of
complexity that make SQL unattractive, so we have
traditionally resorted to hard-coded programs. The
datalog system has several obvious advantages over
these systems. Obviously, as a DBMS, it performs
well at scale and removes the need from the user of
figuring out how to process data that does not fit into
memory. Furthermore, it’s declarative and concise
syntax of logical rules allows for concise expression of
Refraction’s game logic and rapid exploration of new
queries.

There are some drawbacks. First, as Datalog
is used very infrequently in industry compared to
SQL, the tools and resources surrounding it are much
weaker, and require some patience from the user. In
fact, we even discovered a code generation bug in
LogicBlox while developing our system. More im-
portantly, however, the typical software engineer will
be find some of the constructs required by logic pro-
gramming quite challenging. In our example query
proportion unique, the last step was to count equiv-
alence classes. In imperative code this is straightfor-
ward: write an equals function and use a hash map.
The logic programming solution, while concise, took
a significant amount of time for us to think through.
We expect that this will change if logic programming
becomes more mainstream, but for now, the number
of potential users is small.

However, we feel that for personal use, LogicBlox is
an effective system for the kind of research the Center

for Game Science does. We would recommend using
such a system for future research endeavors.
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Figure 3: Computing the wrong sinks query for level 53.
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Figure 5: Computing the bad splitters query for level 50.
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Figure 7: Computing the bad splitters query for level 54.
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