PART

F Finale

n this part, we consider four advanced topics. Two of them (incomplete information and

dynamic aspects) have been studied for a while, but for some reason (perhaps their diffi-
culty) they have never reached the maturity of more established areas such as dependency
theory. Interest in the other two topics (complex values and object databases) is more re-
cent, and our understanding of them is rudimentary. In all cases, no clear consensus has
yet emerged. Our choice of material, as well as our presentation, are therefore unavoid-
ably more subjective than in other parts of this book. However, the importance of these
issues for practical systems, as well as the interesting theoretical issues they raise, led us to
incorporate a discussion of them in this book.

In Chapter 19, we address the issue of incomplete information. In many database
applications, the knowledge of the real world is incomplete. It is crucial to be able to handle
such incompleteness and, in particular, to be able to ask queries and perform updates.
Chapter 19 surveys various models of incomplete databases, research directions, and some
results.

In Chapter 20, we present an extension of relations called complex values. These are
obtained from atomic elements using tuple and set constructors. The richer structure allows
us to overcome some limitations of the relational model in describing complex data. We
generalize results obtained for the relational model; in particular, we present a calculus
and an equivalent algebra.

Chapter 21 looks at another way to enrich the relational model by introducing a num-
ber of features borrowed and adapted from object-oriented programming, such as objects,
classes, and inheritance. In particular, objects consist of a structural part (a data reposi-
tory) and a behavioral part (pieces of code). Thus the extended framework encompasses
behavior, a notion conspicuously absent from relational databases.

Chapter 22 deals with dynamic aspects. This is one of the less settled areas in data-
bases, and it raises interesting and difficult questions. We skim through a variety of issues:
languages and semantics for updates; updating views; updating incomplete information;
and active and temporal databases.

A comprehensive vision of the four areas discussed in Part F is lacking. The reader
should therefore keep in mind that some of the material presented is in flux, and its
importance pertains more to the general flavor than the specific results.
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Incomplete Information

Somebody: What are we doing next?
Alice:  Who are we? Who are you?
Somebody: We are you and the authors of the book, and 1 am one of them. This is an
instance of incomplete information.

Somebody: It’s not much, but we can still tell that surely one of us is Alice and that
there are possibly up to three “Somebodies” speaking.

In the previous parts, we have assumed that a database always records information that
is completely known. Thus a database has consisted of a completely determined finite
instance. In reality, we often must deal with incomplete information. This can be of many
kinds. There can be missing information, as in “John bought a car but I don’t know which
one.” In the case of John’s car, the information exists but we do not have it. In other
cases, some attributes may be relevant only to some tuples and irrelevant to others. Alice is
single, so the spouse field is irrelevant in her case. Furthermore, some information may be
imprecise: “Heather lives in a large and cheap apartment,” where the values of large and
cheap are fuzzy. Partial information may also arise when we cannot completely rely on the
data because of possible inconsistencies (e.g., resulting from merging data from different
sources).

As soon as we leave the realm of complete databases, most issues become much more
intricate. To deal with the most general case, we need something resembling a theory of
knowledge. In particular, this quickly leads to logics with modalities: Is it certain that John
lives in Paris? Is it possible that he may? What is the probability that he does? Does John
know that Alice is a good student? Does he believe so? etc.

The study of knowledge is a fascinating topic that is outside the scope of this book.
Clearly, there is a trade-off between the expressivity of the model for incomplete informa-
tion used and the difficulty of answering queries. From the database perspective, we are
primarily concerned with identifying this trade-off and understanding the limits of what is
feasible in this context. The purpose of this chapter is to make a brief foray into this topic.
We limit ourselves mostly to models and results of a clear database nature. We consider
simple forms of incompleteness represented by null values. The main problem we examine
is how to answer queries on such databases. In relation to this, we argue that for a represen-
tation system of incomplete information to be adequate in the context of a query language,
it must also be capable of representing answers to queries. This leads to a desirable closure
property of representations of incomplete information with respect to query languages. We
observe the increase of complexity resulting from the use of nulls.

We also consider briefly two approaches closer to knowledge bases. The first is based
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488 Incomplete Information

on the introduction of disjunctions in deductive databases, which also leads to a form of
incompleteness. The second is concerned with the use of modalities. We briefly mention
the language KL, which permits us to talk about knowledge of the world.

19.1 Warm-Up

As we have seen, there are many possible kinds of incomplete information. In this section,
we will focus on databases that partially specify the state of the world. Instead of com-
pletely identifying one state of the world, the database contents are compatible with many
possible worlds. In this spirit, we define an incomplete database simply as a set of possible
worlds (i.e., a set of instances). What is actually stored is a representation of an incomplete
database. Choosing appropriate representations is a central issue.

We provide a mechanism for representing incomplete information using null values.
The basic idea is to allow occurrences of variables in the tuples of the database. The
different possible values of the variables yield the possible worlds.

The simplest model that we consider is the Codd table (introduced by Codd), or table
for short. A table is a relation with constants and variables, in which no variable occurs
twice. More precisely, let U be a finite set of attributes. A fable T over U is a finite set of
free tuples over U such that each variable occurs at most once. An example of a table is
given in Fig. 19.1. The figure also illustrates an alternative representation (using @) that is
more visual but that we do not adopt here because it is more difficult to generalize.

The preceding definition easily extends to database schemas. A database table T over
a database schema R is a mapping over R such that for each R in R, T(R) is a table
over sort(R). For this generalization, we assume that the sets of variables appearing in
each table are pairwise disjoint. Relationships between the variables can be stated through

R|A B C R|A B C
0 1 x 0 1 @
y z 1 @ @ 1
2 0 w 2 0 @
Table T Alternative representation of T
R|A B C R|A B C R|A B C R|A B C
0o 1 2 0o 1 2 0o 1 2 0 1 1
2 0 1 3 0 1 2 0 1 2 0 1
2 0 0 2 0 5 2 0 0
I I IZ Iy

Figure 19.1: A table and examples of corresponding instances
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global conditions (which we will introduce in the next section). In this section, we will
focus on single tables, which illustrate well the main issues.

To specify the semantics of a table, we use the notion of valuation (see Chapter 4). The
incomplete database represented by a table is defined as follows:

rep(T) = {v(T) | v a valuation of the variables in T'}.

Consider the table 7 in Fig. 19.1. Then I, ..., I all belong to rep(T) (i.e., are possible
worlds).

The preceding definition assumes the Closed World Assumption (CWA) (see Chap-
ter 2). This is because each tuple in an instance of ref (T') must be justified by the presence
of a particular free tuple in 7. An alternative approach is to use the Open World Assumption
(OWA). In that case, the incomplete database of T would include all instances that contain
an instance of rep(T'). In general, the choice of CWA versus OWA does not substantially
affect the results obtained for incomplete databases.

We now have a simple way of representing incomplete information. What next? Nat-
urally, we wish to be able to query the incomplete database. Exactly what this means is
not clear at this point. We next look at this issue and argue that the simple model of tables
has serious shortcomings with respect to queries. This will naturally lead to an extension
of tables that models more complicated situations.

Let us consider what querying an incomplete database might mean. Consider a table T
and a query ¢. The table T represents a set of possible worlds rep(T). For each I € rep(T),
q would produce an answer g (I). Therefore the set of possible answers of g is g (rep(T)).
This is, again, an incomplete database. The answer to ¢ should be a representation of this
incomplete database.

More generally, consider some particular representation system (e.g., tables). Such a
system involves a language for describing representations and a mapping rep that associates
a set of instances with each representation. Suppose that we are interested in a particular
query language L (e.g., relational algebra). We would always like to be capable of repre-
senting the result of a query in the same system. More precisely, for each representation 7
and query g, there should exist a computable representation g(7') such that

rep(q(T)) = q(rep(T)).

In other words, g (T) represents the possible answers of g [i.e., {g(I) | I € rep(T)}].

If some representation system t has the property described for a query language £, we
will say that t is a strong representation system for L. Clearly, we are particularly interested
in strong representation systems for relational algebra and we shall develop such a system
later.

Let us now return to tables. Unfortunately, we quickly run into trouble when asking
queries against them, as the following example shows.

ExamMPLE 19.1.1 Consider T of Fig. 19.1 and the algebraic query g4—3(7T). There is no
table representing the possible answers to this query. A possible answer (e.g., for 1) is
the empty relation, whereas there are nonempty possible answers (e.g., for I5). Suppose
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that there exists a table T’ representing the set of possible answers. Either T’ is empty and
oa=3(lp) isnot in rep(T’); or T is nonempty and the empty relation is not in rep(T”). This
is a contradiction, so no such 7" can exist.

The problem lies in the weakness of the representation system of tables; we will
consider richer representation systems that lead to a complete representation system for
all of relational algebra. An alternative approach is to be less demanding; we consider this
next and present the notion of weak representation systems.

19.2 Weak Representation Systems

To relax our expectations, we will no longer require that the answer to a query be a
representation of the set of all possible answers. Instead we will ask which are the tuples
that are surely in the answer (i.e., that belong to all possible answers). (Similarly, we may
ask for the tuples that are possibly in the answer (i.e., that belong to some possible answer).
We make this more precise next.

For a table T and a query g, the set of sure facts, sure(q, T), is defined as

sure(q, T) =N{q(I) | I € rep(T)}.

Clearly, a tuple is in sure(q, T) iff it is in the answer for every possible world. Observe
that the sure tuples in a table T [i.e., the tuples in every possible world in rep(T)] can be
computed easily by dropping all free tuples with variables. One could similarly define the
set poss(q, T) of possible facts.

One might be tempted to require of a weak system just the ability to represent the
set of tuples surely in the answer. However, the definition requires some care due to
the following subtlety. Suppose T is the table in Fig. 19.1 and g the query o4—2(R),
for which sure(q, T) = (. Consider now the query ¢’ = map(R) and the query g o ¢q’.
Clearly, ¢’ (sure(q, T)) = @; however, sure(q’(q(rep(T))) = {(2, 0)}. So g o ¢’ cannot be
computed by first computing the tuples surely returned by g and then applying ¢’. This
is rather unpleasant because generally it is desirable that the semantics of queries be
compositional (i.e., the result of g o ¢’ should be obtained by applying ¢’ to the result
of g). The conclusion is that the answer to g should provide more information than just
sure(q, T); the incomplete database it specifies should be equivalent to g (rep(T)) with
respect to its ability to compute the sure tuples of any query in the language applied to it.
This notion of equivalence of two incomplete databases is formalized as follows.

If £ is a query language, we will say that two incomplete databases Z, J are L
equivalent, denoted Z =, 7, if for each ¢ in £ we have

Mg 1Tely=n{q(D) 1T}

In other words, the two incomplete databases are undistinguishable if all we can ask for is
the set of sure tuples in answers to queries in L.
We can now define weak representation systems. Suppose L is a query language. A
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representation system is weak for L if for each representation 7' of an incomplete database,
and each ¢ in L, there exists a representation denoted g (7") such that

rep(q(T)) = q(rep(T)).

With the preceding definition, g(7") does not provide precisely sure(q, T) for tables
T. However, note that sure(q, T) can be obtained at the end simply by eliminating from
the answer all rows with occurrences of variables.

The next result indicates the power of tables as a weak representation system.

THEOREM 19.2.1 Tables form a weak representation system for selection-projection (SP)
[i.e., relational algebra limited to selection (involving only equalities and inequalities) and
projection]. If union or join are added, tables no longer form a weak representation system.

Crux It is easy to see that tables form a weak representation system for SP queries.
Selections operate conservatively on tables. For example,

Geond(T) ={t |t € T and cond(v(t)) holds
for all valuations v of the variables in 7}.

Projections operate like classical projections. For example, if 7 is again the table in
Fig. 19.1, then

0a=2(T) ={(2,0,v)}

and

(aB(R) 0 o4=2(R))(T) ={(2, 0)}.

Let us show that tables are no longer a weak representation system if join or union are
added to SP. Consider join first. So the query language is now SPJ. Let T be the table

R|A B C
a x ¢
a x

where x, x’ are variables and a, a’, ¢, ¢/ are constants.
Let ¢ = mac(R) < wp(R). Suppose there is table W such that

rep(W) =spy q(rep(T)),

and consider the query ¢’ = wac(map(R) < wpc(R)). Clearly, sure(q o ¢/, T) is
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Lo, O

Therefore sure(q’, W) must be the same. Because (da’, ¢) € sure(q’, W), for each valua-
tion v of variables in W there must exist tuples u, v € W such that u(A) =a’, v(C) =
¢, v(u)(B) = v(v)(B). Let v be a valuation such that v(z) # v(y) for all variables z, y, z #
y.Ifu=v,thenu(A) =a’ and u(C) = cso (@', ¢) € sure(mac(R), W). This cannot be be-
cause, clearly, (d/, ¢) & sure(wac(R), q(rep(T))). So, u # v. Because v(u)(B) = v(v)(B)
and W has no repeated variables, it follows that u(B) and v(B) equal some constant k. But
then (a’, k) € sure(wap(R), W), which again cannot be because one can easily verify that
sure(map(R), q(rep(T))) = 0.

The proof that tables do not provide a weak representation system for SPU follows
similar lines. Just consider the table T

R|A B

and the query ¢ outputting two relations: 04—, (R) and 04,(R). It is easily seen that there
is no pair of tables Wy, Wy weakly representing g (rep(T')) with respect to SPU. To see this,
consider the query ¢’ = 75(W U W>). The details are left to the reader (Exercise 19.7). |

Naive Tables

The previous result shows the limitations of tables, even as weak representation systems.
As seen from the proof of Theorem 19.2.1, one problem is the lack of repeated variables.
We next consider a first extension of tables that allows repetitions of variables. It will
turn out that this will provide a weak representation system for a large subset of relational
algebra.

A naive table is like a table except that variables may repeat. A naive table is shown
in Fig. 19.2. Naive tables behave beautifully with respect to positive existential queries
(i.e., conjunctive queries augmented with union). Recall that, in terms of the algebra, this
is SPJU.

THEOREM 19.2.2 Naive tables form a weak representation system for positive relational
algebra.

Crux Given a naive table T and a positive query ¢, the evaluation of g(7) is extremely
simple. The variables are treated as distinct new constants. The standard evaluation of g is
then performed on the table. Note that incomplete information yields no extra cost in this
case. We leave it to the reader to verify that this works. |
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R|A B C
0 1 x
x z 1
2 0 w

Figure 19.2: A naive table

Naive tables yield a nice representation system for a rather large language. But the
representation system is weak and the language does not cover all of relational algebra. We
introduce in the next section a representation that is a strong system for relational algebra.

19.3 Conditional Tables

We have seen that Codd tables and naive tables are not rich enough to provide a strong
representation system for relational algebra. To see what is missing, recall that when we
attempt to represent the result of a selection on a table, we run into the problem that
the presence or absence of certain tuples in a possible answer is conditioned by certain
properties of the valuation. To capture this, we extend the representation with conditions
on variables, which yields conditional tables. We will show that such tables form a strong
representation system for relational algebra.

A condition is a conjunct of equality atoms of the form x = y, x = ¢ and of inequality
atoms of the form x # y, x # ¢, where x and y are variables and c is a constant. Note that
we only use conjuncts of atoms and that the Boolean frue and false can be respectively
encoded as atoms x = x and x # x.

If formula @ is a condition, we say that a valuation v satisfies ® if its assignment of
constants to variables makes the formula true.

Conditions may be associated with table T in two ways: (1) A global condition @7 is
associated with the entire table T'; (2) a local condition ¢, is associated with one tuple ¢ of
table 7. A conditional table (c-table for short) is a triple (T, 7, ¢), where

e T is atable,
e &7 is a global condition,

* ¢ is a mapping over T that associates a local condition ¢, with each tuple 7 of T'.

A c-table is shown in Fig. 19.3. If we omit listing a condition, then it is by default the atom
true. Note also that conditions &7 and ¢, for ¢ in T may contain variables not appearing
respectively in T or ¢.

For our purposes, the global conditions in c-tables could be distributed at the tuple level
as local conditions. However, they are convenient as shorthand and when dependencies are
considered.

For brevity, we usually refer to a c-table (T, @7, ¢) simply as T. A given c-table T
represents a set of instances as follows (again adopting the CWA):
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T"| A B

x#£2,y#2

Ji|A B L, |A B 5 |A B IL,|A B
0 1 0 1 0 1 0 1
0 0 1 0 0 3

Figure 19.3: A c-table and some possible instances

rep(T) = {1 | there is a valuation v satisfying ®7 such that relation /

consists exactly of those facts v(¢) for which v satisfies ¢;}.

Consider the table T in Fig. 19.3. Then J, J,, J3, J4 are obtained by valuating x, y, z
to (0,0,0), (0,1,0), (1,0,0), and (3,0,0), respectively.

The next example illustrates the considerable power of the local conditions of c-tables,
including the ability to capture disjunctive information.

ExamPLE 19.3.1 Suppose we know that Sally is taking math or computer science (CS)
(but not both) and another course; Alice takes biology if Sally takes math, and math or
physics (but not both) if Sally takes physics. This can be represented by the following
c-table:

Student  Course
(x # math) A (x # CS)

Sally math (z=0)

Sally CcS (z#0)

Sally X

Alice biology (z=0)

Alice math (x = physics) A (t =0)
Alice physics  (x = physics) A (t #£0)
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Observe that there may be several c-table representations for the same incomplete
database. Two representations 7, T’ are said to be equivalent, denoted T = T, if rep(T) =
rep(T"). Testing for equivalence of c-tables is not a trivial task. Just testing membership
of an instance in rep(T'), apparently a simpler task, will be shown to be NP-complete. To
test equivalence of two c-tables T and 7', one must show that for each valuation v of the
variables in T there exists a valuation v’ for 7’ such that v(T) = v/(T”), and conversely.
Fortunately, it can be shown that one need only consider valuations to a set C of constants
containing all constants in 7 or 7’ and whose size is at most the number of variables in the
two tables (Exercise 19.11). This shows that equivalence of c-tables is decidable.

In particular, finding a minimal representation can be hard. This may affect the com-
putation of the result of a query in various ways: The complexity of computing the answer
may depend on the representation of the input; and one may require the result to be some-
what compact (e.g., not to contain tuples with unsatisfiable local conditions).

It turns out that c-tables form a strong representation system for relational algebra.

THEOREM 19.3.2 For each c-table T over U and relational algebra query ¢ over U, one
can construct a c-table g(7') such that rep(qg(T)) = q(rep(T)).

Crux The proof is straightforward and is left as an exercise (Exercise 19.13). The exam-
ple in Fig. 19.4 should clarify the construction.! For projection, it suffices to project the
columns of the table. Selection is performed by adding new conjuncts to the local condi-
tions. Union is represented by the union of the two tables (after making sure that they use
distinct sets of variables) and choosing the appropriate local conditions. Join and intersec-
tion involve considering all pairs of tuples from the two tables. For difference, we consider
a tuple in the first table and add a huge conjunct stating that it does not match any tuple
from the second table (disjunctions may be used as shorthand; they can be simulated using
new variables, as illustrated in Example 19.3.1). ®

To conclude this section, we consider (1) languages with recursion, and (2) depen-
dencies. In both cases (and for related reasons) the aforementioned representation system
behaves well. The presentation is by examples, but the formal results can be derived easily.

Languages with Recursion

Consider an incomplete database and a query involving fixpoint. For instance, consider the
table in Fig. 19.5. The representation 7c(T) of the answer to the transitive closure query fc
is also given in the same figure. One can easily verify that

rep(tc(T)) = tc(rep(T)).

This can be generalized to arbitrary languages with iteration. For example, consider a
c-table T and a relational algebra query ¢ that we want to iterate until a fixpoint is reached.

! The representations in the tables can be simplified; they are given in rough form to illustrate the
proof technique.
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Tl B C T2 B C ﬁB(Tz) B
x c y ¢ ((y=b) y (=b)
z w z
T | A B opp(T1 XT3)|A B C
a 'y a y ¢ (=x)AQ(=>b)
T]UTz B C TINT3 A B C
x c a y ¢ (=x
y ¢ (=b
z w
T,-T7, | B C
x ¢ (#Eb)AX#2)
x ¢ (b AWw#zo)
x ¢ (=bArxzEb)AMKX£YZ
x ¢ (=bAarxzEb)AWZC)
Figure 19.4: Computing with c-tables

Then we can construct the sequence of c-tables:

(1), 3T, ..., q(T),....

Suppose now that g is a positive query. We are guaranteed to reach a fixpoint on
every single complete instance. However, this does not a priori imply that the sequence
of representations {g'(T')};~o converges. Nonetheless, we can show that this is in fact the

case. For some i,

rep(q'(T)) = rep(g t(T)).
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T|A B fe(Ty | A B
a b a b
X c x ¢
c d c d
a ¢ x=b
x d
c ¢ x=d
a d x=b

Figure 19.5: Transitive closure of a table

(See Exercise 19.17.) It can also be shown easily that for such i, every I € rep(q' (T))
is a fixpoint of ¢. The proof is by contradiction: Suppose there is I € rep(g'(T)) such
that g(I) # I, and consider one such / with a minimum number of tuples. Because
rep(ﬁi(T)) = rep(?f“(T)), I =¢q(J) for some J € rep(c_f(T)). Because ¢ is positive,
J C I; so because g(I) # I, J C I. This contradicts the minimality of /. So Ei(T)) is
indeed the desired answer.

Thus to find the table representing the result, it suffices to compute the sequence
{qi (T)}i>o and stop when two consecutive tables are equivalent.

Dependencies

In Part B, we studied dependencies in the context of complete databases. We now recon-
sider dependencies in the context of incomplete information. Suppose we are given an
incomplete database (i.e., a set Z of complete databases) and are told, in addition, that
some set X of dependencies is satisfied. The question arises: How should we interpret the
combined information provided by Z and by X?

The answer depends on our view of the information provided by an incomplete data-
base. Dependencies should add to the information we have. But how do we compare in-
complete databases with respect to information content? One common-sense approach, in
line with our discussion so far, is that more information means reducing further the set
of possible worlds. Thus an incomplete database Z (i.e., a set of possible worlds) is more
informative than J iff Z C J. In this spirit, the natural use of dependencies would be to
eliminate from Z those possible worlds not satisfying X. This makes sense for egd’s (and
in particular fd’s).

A different approach may be more natural in the context of tgd’s. This approach stems
from a relaxation of the CWA that is related to the OWA. Let Z be an incomplete database,
and let ¥ be a set of dependencies. Recall that tgd’s imply the presence of certain tuples
based on the presence of other tuples. Suppose that for some / € 7, a tuple ¢ implied by a
tgd in X is not present in /. Under the relaxation of the CWA, we conclude that ¢ should
be viewed as present in /, even though it is not represented explicitly. More generally, the
chase (see Chapter 8), suitably generalized to operate on instances rather than tableaux,
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I I I Ji J

a b e f g a b c a b c e f g

a b e f g g b h a b e g
e f g a b (¢ e f g
e [ g a b c e g

Figure 19.6: Incomplete databases and dependencies

can be used to complete the instance by adding all missing tuples implied by the tgd’s in
3. (See Exercise 19.18.)

In fact, the chase can be used for both egd’s and tgd’s. In contrast to tgd’s, the effect of
chasing with egd’s (and, in particular, fd’s) may be to eliminate possible worlds that violate
them. Note that tuples added by tgd’s may lead to violations of egd’s. This suggests that an
incomplete database 7 with a set ¥ of dependencies represents

{chase(1, X) | I € T and the chase of I by X succeeds}.

For example, consider Fig. 19.6, which shows the incomplete database Z = {1, I, I3}.
Under this perspective, the incorporation of the dependencies ¥ = {A —> B, B — A} in
this incomplete database leads to J = {J1, J2}.

Suppose now that the incomplete database Z is represented as a c-table 7. Can the
effect of a set X of full dependencies on T be represented by another c-table 7’? The
answer is yes, and 7" is obtained by extending the chase to c-tables in the straightforward
way. For example, a table 77 and its completion 7> by ¥ = {A —> B, C — D} are given
in Fig. 19.7. The reader might want to check that

chasex (rep(T1)) = rep(T>).

WA B C D .|A B C D
b ¢ a b ¢ d
e g x e y g

c z a by g (x=a

a e ¢ d (x=a)

Figure 19.7: c-tables and dependencies
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19.4 The Complexity of Nulls

Conditional tables may appear to be a minor variation from the original model of complete
relational databases. However, we see next that the use of nulls easily leads to intractability.
This painfully highlights the trade-off between modeling power and resources.

We consider some basic computational questions about incomplete information data-
bases. Perhaps the simplest question is the possibility problem: “Given a set of possible
worlds (specified, for instance, by a c-table) and a set of tuples, is there a possible world
where these tuples are all true?” A second question is the certainty problem: “Given a set
of possible worlds and a set of tuples, are these tuples all true in every possible world?”
Natural variations of these problems involve queries: Is a given set of tuples possibly (or
certainly) in the answer to query g?

Consider a (c-) table T, a query ¢, a relation I, and a tuple z. Some typical questions
include the following:

(Membership) Is I a possible world for T [i.e., I € rep(T)]?

(Possibility) Is ¢ possible [i.e., 31 € rep(T)(t € I)]?

(Certainty) Is ¢ certain [i.e., VI € rep(T)(t € 1)]?

(g-Membership) Is I a possible answer for g and T [i.e., I € g(rep(T))]?
(g-Possibility) Is ¢ possibly in the answer [i.e., 31 € rep(T)(t € g(1))]?
(g-Certainty) Is ¢ certainly in the answer [i.e., VI € rep(T)(t € q(1))]?

Finally we may consider the following generalizations of the g-membership problem:

(g-Containment) Is T contained in g (T") [i.e., rep(T) < q(rep(T"))]?
(g, ¢’-Containment) Is ¢ (T') contained in ¢'(T) [i.e., rep(q(T)) C rep(q’(T))]?

The crucial difference between complete and incomplete information is the large num-
ber of possible valuations for the latter case. Because of the finite number of variables in a
set of c-tables, only a finite number of valuations are nonisomorphic (see Exercise 19.10).
However, the number of such valuations may grow exponentially in the input size. By sim-
ple reasoning about all valuations and by guessing particular valuations, we have some
easy upper bounds. For a query ¢ that can be evaluated in polynomial time on complete
databases, deciding whether I € q(rep(T)), or whether I is a set of possible answers, can
be answered in NP; checking whether g (rep(T')) = {I}, or if I is a set of certain tuples, is
in co-NP.

To illustrate such complexity results, we demonstrate one lower bound concerning the
q-membership problem for (Codd) tables.

PRrROPOSITION 19.4.1 There exists a positive existential query g such that checking, given
atable T and a complete instance I, whether I € g (rep(T')) is NP-complete.

Proof The proof is by reduction of graph 3-colorability. For simplicity, we use a query
mapping a two-relation database into another two-relation database. (An easy modification
of the proof shows that the result also holds for databases with one relation. In particular,
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increase the arity of the largest relation, and use constants in the extra column to encode
several relations into this one.)

We will use (1) an input schema R with two relations R, S of arity 5 and 2, respec-
tively; (2) an output schema R’ with two relations R’, S of arity 3 and 1, respectively; and
(3) a positive existential query ¢ from R to R’. The query ¢ [returning, on each input I over
R, two relations g (I) and g,(I) over R’ and S’] is defined as follows:

g1 ={(x,z,Z) [ Ty(Fvw(R(x, y,v, w,2) V R(v,w, x, y,2))]
A[Fvw(R(x, y, v, w,z)V Rw, w, x,y,Z)D}
g2 = {z | Ixyvw(R(x, y, v, w, 2) A S(y, w))}.

For each input G = (V, E) to the graph 3-colorability problem, we construct a table
T over the input schema R and an instance I’ over the output schema R, such that G is
3-colorable iff I' € ¢ (rep(T)).

Without loss of generality, assume that G has no self-loops and that E is a binary
relation, where we list each edge once with an arbitrary orientation.

Let V. ={q; |i €[l.n]} and E = {(bj,c;) | j € [1.m]}. Let {x; | j € [1..m]} and
{v;j | j €[1..m]} be two disjoint sets of distinct variables. Then T and I’ are constructed
as follows:

(@) T(R) ={t; | j € [1..m]}, where ¢; is the tuple (b, x;, cj, yj, j);
() T(S) ={(, j) i, jef{l,2,3},i#j}

(c) '(R)={(a, j. k) | a € {bj, cj} N {b, ck}, where each (b, c) pair is an edge in
E }; and

@ I'(SH={jlJjell.ml}.

Intuitively, for each tuple in I(R), the second column contains the color of the vertex in
the first column, and the fourth column contains the color of the vertex in the third column.
The edges are numbered in the fifth column. The role of query g is to check whether this
provides an assignment of the three colors {1, 2, 3} to vertexes such that the colors of the
endpoints of each edge are distinct. Indeed, g» returns the edges z for which the colors
y, w of its endpoints are among {1, 2, 3}. So if g(I)(S") = I'(S’), then all edges have color
assignments among {1, 2, 3} to their endpoints. Next query ¢g; checks whether a vertex is
assigned the same color consistently in all edges where it occurs. It returns the (x, z, 7'},
where x is a vertex, z and 7" are edges, x occurs as an endpoint, and x has the same color
assignment y in both z and z’. So if g; (I)(R") = I'(R’), it follows that the color assignment
is consistent everywhere for all vertexes.

For example, consider the graph G given in Fig. 19.8; the corresponding I’ and T
are exhibited in Fig. 19.9. Suppose that f is a 3-coloring of G. Consider the valuation o
defined by o (x;) = f(b;) and o (y;) = f(c;) for all j. It is easily seen that I =q(o(T)).
Moreover, it is straightforward to show that G is 3-colorable iff I’ is in g (rep(T)). |
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Figure 19.8: Graph G

T(R) T(S) I'(R) I'(S)
1 x1 2 y 1 1 2 1 1 1 1
2 x 3 y 2 1 3 1 1 4 2
3 x3 4 y3 3 2 1 1 1 5 3
4 x4 1 ys 4 2 3 1 4 1 4
3 x5 1 y5 5 3 1 1 4 4 5
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Figure 19.9: Encoding for the reduction of 3-colorability

19.5 Other Approaches

Incomplete information often arises naturally, even when the focus is on complete data-
bases. For example, the information in a view is by nature incomplete, which in particular
leads to problems when trying to update the view (as discussed in Chapter 22); and we
already considered relations with nulls in the weak universal relations of Chapter 11.

In this section, we briefly present some other aspects of incomplete information. We
consider some alternative kinds of null values; we look at disjunctive deductive databases;
we mention a language that allows us to address directly in queries the issue of incom-
pleteness; and we briefly mention several situations in which incomplete information arises
naturally, even when the database itself is complete. An additional approach to representing
incomplete information, which stems from using explicit logical theories, will be presented
in connection with the view update problem in Chapter 22.
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Other Nulls in Brief

So far we have focused on a specific kind of null value denoting values that are unknown.
Other forms of nulls may be considered. We may consider, for instance, nonexisting nulls.
For example, in the tuple representing a CEQO, the field DirectManager has no meaning
and therefore contains a nonexisting null. Nonexisting nulls are at the core of the weak
universal model that we considered in Chapter 11.

It may also be the case that we do not know for a specific field if a value exists. For
example, if the database ignores the marital status of a particular person, the spouse field
is either unknown or nonexisting. It is possible to develop a formal treatment of such no-
information nulls. An incomplete database consists of a set of sets of tuples, where each set
of tuples is closed under projection. This closure under projection indicates that if a tuple
is known to be true, the projections of this tuple (although less informative) are also known
to be true. (The reader may want to try, as a nontrivial exercise, to define tables formally
with such nulls and obtain a closure theorem analogous to Theorem 19.3.2.)

For each new form of null values, the game is to obtain some form of representation
with clear semantics and try to obtain a closure theorem for some reasonable language
(like we did for unknown nulls). In particular, we should focus on the most important
algebraic operations for accessing data: projection and join. It is also possible to establish
a lattice structure with the different kinds of nulls so that they can be used meaningfully in
combination.

Disjunctive Deductive Databases

Disjunctive logic programming is an extension of standard logic programming with rules
of the form

A V---VA; < By,...,Bj,—Cy,...,—Cy.

In datalog, the answer to a query is a set of valuations. For instance, the answer to a query
< Q(x) is a set of constants a such that Q(a) holds. In disjunctive deductive databases,
an answer may also be a disjunction Q(a) v Q(b).

Disjunctions give rise to new problems of semantics for logic programs. Although in
datalog each program has a unique minimal model, this is no longer the case for datalog
with disjunctions. For instance, consider the database consisting of a single statement
{O(a) v Q(b)}. Then there are clearly two minimal models: {Q(a)} and {Q(b)}. This
leads to semantics in terms of sets of minimal models, which can be viewed as incomplete
databases. We can develop a fixpoint theory for disjunctive databases, extending naturally
the fixpoint approach for datalog. To do this, we use an ordering over sets of minimal
interpretations (i.e., sets Z of instances such that there are no 1, J in Z with I C J).

DEFINITION 19.5.1 LetZ, J be sets of minimal interpretations. Then

JCTiff VIeZ 3JeJ (JCI)).
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Consider the following immediate consequence operator. Let P be a datalog program
with disjunctions, and let 7 be a set of minimal interpretations. A new set J of interpre-
tations is obtained as follows. For each [ in Z, statep(I) is the set of disjunctions of the
form Ay Vv --- Vv A; that are immediate consequences of some facts in / using P. Then J
is the set of of instances J such that for some I € Z, J is a model of statep(I) contain-
ing 1. Clearly, 7 is not a set of minimal interpretations. The immediate consequence of Z,
denoted Tp(Z), is the set of minimal interpretations in 7. Now consider the sequence

To=9
i =Tp(Zi-1).

It is easy to see that the sequence {Z;};>0 is nondecreasing with respect to the ordering C,
so it becomes constant at some point. The semantics of P is the limit of the sequence.

When negation is introduced, the situation, as usual, becomes more complicated. How-
ever, it is possible to extend semantics, such as stratified and well founded, to disjunctive
deductive databases.

Overall, the major difficulty in handling disjunction is the combinatorial explosion it
entails. For example, the fixpoint semantics of datalog with disjunctions may yield a set of
interpretations exponential in the input.

Logical Databases and KL

The approach to null values adopted here is essentially a semantic approach, because the
meaning of an incomplete database is a set of possible instances. One can also use a
syntactic, proof-theoretic approach to modeling incomplete information. This is done by
regarding the database as a set of sentences, which yields the logical database approach.

As discussed in Chapter 2, in addition to statements about the real world, logical
databases consider the following:

1. Uniqueness axioms: State that distinct constants stand for distinct elements in the
real world.

2. Domain closure axiom: Specify the universe of constants.

3. Completion axiom: Specify that no fact other than recorded holds.

Missing in both the semantic and syntactic approaches is the ability to make more
refined statements about what the database knows. Such capabilities are particularly im-
portant in applications where the real world is slowly discovered through imprecise data.
In such applications, it is general impossible to wait for a complete state to answer queries,
and it is often desirable to provide the user with information about the current state of
knowledge of the database.

To overcome such limitations, we may use languages with modalities. We briefly
mention one such language: KL. The language KL permits us to distinguish explicitly
between the real world and the knowledge the database has of it. It uses the particular
modal symbol K. Intuitively, whereas the sentence ¢ states the truth of ¢ in the real world,
K ¢ states that the database knows that ¢ holds.

For instance, the fact that the database knows neither that Alice is a student nor that
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she is not is expressed by the statement
=K Student(Alice) A =K (—Student (Alice)).
The following KL statement says that there is a teacher who is unknown:
dx (Teacher(x) A =K (Teacher(x))).

This language allows the database to reason and answer queries about its own knowledge
of the world.

Incomplete Information in Complete Databases

Incomplete information often arises naturally even when the focus is on complete data-
bases. The following are several situations that naturally yield incomplete information:

* Views: Although a view of a database is usually a complete database, the information
it contains is incomplete relative to the whole database. For a user seeing the view,
there are many possible underlying databases. So the view can be seen as a rep-
resentation for the set of possible underlying databases. The incompleteness of the
information in the view is the source of the difficulty in view updating (see Chap-
ter 22).

o Weak universal relations: We have already seen how relations with nulls arise in the
weak universal relations of Chapter 11.

* Nondeterministic queries: Recall from Chapter 17 that nondeterministic languages
have several possible answers on a given input. Thus we can think of nondeter-
ministic queries as producing as an answer a set of possible worlds (see also Ex-
ercise 19.20).

o Semantics of negation: As seen in Chapter 15, the well-founded semantics for
datalog™ involves 3-valued interpretations, where some facts are neither true nor
false but unknown. Clearly, this is a form of incomplete information.
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Exercises

Exercise 19.1 Consider the c-table in Example 19.3.1. Give the c-tables for the answers to
these queries: (1) Which students are taking Math? (2) Which students are not taking Math? (3)
Which students are taking Biology? In each case, what are the sets of sure and possible tuples
of the answer?

Exercise 19.2 Consider the c-table 7’ in Fig. 19.3. Show that each I in rep(T”) has two tuples.
Is T’ equivalent to some 2-tuple c-table?

Exercise 19.3 Consider the naive table in Fig. 19.2. In the weak representation system de-
scribed in Section 19.1, compute the naive tables for the answers to the queries o4—c(R),
wag(R) < mac(R). What are the tuples surely in the answers to these queries?

Exercise 19.4 A ternary c-table T represents a directed graph with blue, red, and yellow
edges. The first two columns represent the edges and the last the colors. Some colors are
unknown. The local conditions are used to enforce that a blue edge cannot follow a red one
on a path. Give a datalog query ¢ stating that there is a cycle with no two consecutive edges of
the same color. Give c-tables such that (1) there is surely such a cycle; and (2) there may be one
but it is not sure. In each case, compute the table strongly representing the answer to g.

Exercise 19.5 Let T be the Codd table in Fig. 19.1. Compute strong representations of the
results of the following queries, using c-tables: (a) 04—3(R); (b) g1 = Spc—ap(@pc(R)); (c)
q1 U map(R); (d) g1 N wap(R); () 1 — wap(R); () g1 > wpc(R).

Exercise 19.6 Consider the c-table 7, = T; U T; of Fig. 19.4. Compute a strong representation
of the transitive closure of 7.

Exercise 19.7 Complete the proof that Codd tables are not a weak representation system with
respect to SPU, in Theorem 19.2.1.

Exercise 19.8 Example 19.1.1 shows that one cannot strongly represent the result of a selec-
tion on a table with another table. For which operations of relational algebra applied to tables is
it possible to strongly represent the result?

Exercise 19.9 Prove that naive tables are not a weak representation system for relational
algebra.

Exercise 19.10 Prove that, given a c-table T without constants, rep(T) is the closure under
isomorphism of a finite set of instances. Extend the result for the case with constants.

Exercise 19.11 Provide an algorithm for testing equivalence of c-tables.

* Exercise 19.12 Show that there exists a datalog query ¢ such that, given a naive table 7 and
a tuple 7, testing whether ¢ is possibly in the answer is NP-complete.

Exercise 19.13 Prove Theorem 19.3.2.

Exercise 19.14 Prove that for each c-table 7 and each set of fd’s and mvd’s, there exists a
table 7, such that chasex (rep(T1)) = rep(T). Hint: Use the chase on c-tables.

* Exercise 19.15 Show that there is a query ¢ in polynomial time for which deciding, given
and a c-table T', (a) whether I € g(rep(T)), or whether I is possible, are NP-complete; and (b)
whether g (rep(T)) < {I}, or whether [ is certain, are co-NP-complete.
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Exercise 19.16 Give algorithms to compute, for a c-table 7' and a relational algebra query ¢,
the set of tuples sure(g, T') surely in the answer and the set of tuples poss(q, T) possibly in the
answer. What is the complexity of your algorithms?

Exercise 19.17 Let T be a c-table and ¢ a positive existential query of the same arity as 7.
Show that the sequence Ei(T) converges [i.e., that for some i, ﬁi(T) = §i+1(T)]. Hint: Show
that the sequence converges in at most m stages, where m = max{i | ¢'(I) = ¢'*' (), I € T}
and where 7 is a finite set of relations representing the nonisomorphic instances in rep(T).

Exercise 19.18 Describe how to generalize the technique of chasing by full dependencies
to apply to instances rather than tableau. If an egd can be applied and calls for two distinct
constants to be identified, then the chase ends in failure. Show that for instance 7, if the chase
of I by X succeeds, then chase(I, X) = X.

Exercise 19.19 Show that for datalog programs with disjunctions in heads of rules, the se-
quence {Z;};>o of Section 19.5 converges. What can be said about the limit in model-theoretic
terms?

® Exercise 19.20 [ASV90] There is an interesting connection between incomplete information
and nondeterminism. Recall the nondeterministic query languages based on the witness operator
W, in Chapter 17. One can think of nondeterministic queries as producing as an answer a
set of possible worlds. In the spirit of the sure and possible answers to queries on incomplete
databases, one can define for a nondeterministic query ¢ the deterministic queries sure(q) and
poss(q) as follows:

sure(q)(I) ="{J | J € q(D)}
poss(g)(I) =U{J | J € q(1)}
Consider the language FO + W, where a program consists of a finite sequence of assignment
statements of the form R := ¢, where ¢ is a relational algebra expression or an application of W
to a relation. Let sure(FO + W) denote all deterministic queries that can be written as sure(q)
for some FO + W query ¢, and similarly for poss(FO + W). Prove that
(a) poss(FO + W) =np, and
(b) sure(FO + W) =co-NP.



Complex Values

Alice:  Complex values?
Riccardo:  We could have used a different title: nested relations, complex objects,
structured objects . . .
Vittorio: ... NINE, NFNF, NF%, NF2, V-relation ... I have seen all these names
and others as well.
Sergio: In a nutshell, relations are nested within relations; something like
Matriochka relations.
Alice:  Oh, yes. I love Matriochkas.

Ithough we praised the simplicity of the data structure in the relational model, this

simplicity becomes a severe limitation when designing many practical database ap-
plications. To overcome this problem, the complex value model has been proposed as a
significant extension of the relational one. This extension is the topic of this chapter.

Intuitively, complex values are relations in which the entries are not required to be
atomic (as in the relational model) but are allowed to be themselves relations. The data
structure in the relational model (the relation) can be viewed as the result of applying to
atomic values two constructors: a tuple constructor to make tuples and a set constructor
to make sets of tuples (relations). Complex values allow the application of the tuple and
set constructor recursively. Thus they can be viewed as finite trees whose internal nodes
indicate the use of the tuple and finite set constructors. Clearly, a relation is a special kind
of complex value: a set of tuples of atomic values.

At the schema level, we will specify a set of complex sorts (or types). These indicate
the structure of the data. At the instance level, sets of complex values corresponding to
these sorts are provided. For example, we have the following:

Sort Complex Value
dom a
{dom} {a, b, c}

(A :dom, B : dom) (A:a,B:b)
{{A:dom, B :dom)} {(A:a,B:b),{(A:b,B:a)}
{{dom}} {{a, b}, {a}. { }}

An example of a more involved complex value sort and of a value of that sort is shown
in Fig. 20.1(a). The tuple constructor is denoted by x and the set constructor by *. An

508
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(a) A sort and a value of that sort

A B C
A E
a b | ¢ 3
d
A _E
e f

(b) Another representation of the same value

Figure 20.1: Complex value

alternative representation more in the spirit of our representations of relations is shown in
Fig. 20.1(b). Another complex value (for a CINEMA database) is shown in Fig. 20.2.

We will see that, whereas it is simple to add the tuple constructor to the traditional
relational data model, the set constructor requires a number of interesting new ideas. There
are similarities between this set construct and the set constructs used in general-purpose
programming languages such as Setl.

In this chapter, we introduce complex values and present a many-sorted algebra and
an equivalent calculus for complex values. The focus is on the use of the two constructors
of complex values: tuples and (finite) sets. (Additional constructors, such as list, bags, and
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Director Movies
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Andersson
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Ullman
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Bjornstrand
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Poppe

The Seventh Seal

Figure 20.2: The CINEMA database revisited (with additional data shown)

union, have also been incorporated into complex values but are not studied here.) After in-
troducing the algebra and calculus, we present examples of these interesting languages. We
then comment on the issues of expressive power and complexity and describe equivalent
languages with fixpoint operators, as well as languages in the deductive paradigm. Finally
we briefly examine a subset of the commercial query language O,SQL that provides an
elegant SQL-style syntax for querying complex values.

The theory described in this chapter serves as a starting point for object-oriented data-
bases, which are considered in Chapter 21. However, key features of the object-oriented
paradigm, such as objects and inheritance, are still missing in the complex value frame-
work and are left for Chapter 21.
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20.1 Complex Value Databases

Like the relational model, we will use relation names in relname, attributes in att, and
constants in dom. The sorts are more complex than for the relational model. Their abstract
syntax is given by

T =dom | (By:7,...,Br:1) | {1},

where kK > 0 and By, ..., By are distinct attributes. Intuitively, an element of dom is a
constant; an element of (Bj : 7y, ..., By : Tx) is a k-tuple with an element of sort 7; in entry
B; for each i; and an element of sort {r} is a finite set of elements of sort 7.
Formally, the set of values of sort T (i.e., the interpretation of t), denoted [z], is defined

by

1. [dom] = dom,

2. = {vi,...,v}1j=0,v ezl i €[, jl}, and

3. Br:ti, ooy Betudl = {(Br:vi, ..., Betwg) [ vy €zl j € [1, k1)
An element of a sort is called a complex value. A complex value of the form

(By:ai,...,Br:ag) is said to be a tuple, whereas a complex value of the form
{a1, ..., a;}is a set.

REMARK 20.1.1 For instance, consider the sort
{(A:dom, B :dom, C : {(A : dom, E : {dom})})}

and the value

{{(A:a,B:b,C:{ (A:c,E:{}),
(A:d, E:{}1)}),
(A:e,B: f,C:{})}

of that sort. This is yet again the value of Fig. 20.1. It is customary to omit dom and for
instance write this sort {{(A, B, C : {{A, E : {})})}.

As mentioned earlier, each complex value and each sort can be viewed as a finite
tree. Observe the tree representation. Outgoing edges from tuple vertexes are labeled; set
vertexes have a single child in a sort and an arbitrary (but finite) number of children in a
value.

Finally note that (because of the empty set) a complex value may belong to more than
one sort. For instance, the value of Fig. 20.1 is also of sort

{{A :dom, B :dom, C : {{A :dom, E : {{dom}})})}.

Relational algebra deals with sets of tuples. Similarly, complex value algebra deals
with sets of complex values. This motivates the following definition of sorted relation (this
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definition is frequently a source of confusion):

A (complex value) relation of sort 7 is a finite set of values of sort 7.

We use the term relation for complex value relation. When we consider the classical
relational model, we sometimes use the phrase flat relation to distinguish it from complex
value relation. It should be clear that the flat relations that we have studied are special cases
of complex value relations.

We must be careful in distinguishing the sort of a complex value relation and the sort
of the relation viewed as one complex value. For example, a complex value relation of sort
(A, B, C) is a set of tuples over attributes ABC. At the same time, the entire relation can be
viewed as one complex value of sort {{(A, B, C)}. There is no contradiction between these
two ways of viewing a relation.

We now assume that the function sort (of Chapter 3) is from relname to the set of
sorts. We also assume that for each sort, there is an infinite number of relations having that
sort.

Note that the sort of a relation is not necessarily a tuple sort (it can be a set sort). Thus
relations do not always have attributes at the top level. Such relations whose sort is a set
are essentially unary relations without attribute names.

A (complex value) schema is a relation name; and a (complex value) database schema
is a finite set of relation names. A (complex value) relation over relation name R is a
finite set of values of sort sort(R)—that is, a finite subset of [sort(R)]. A (complex value
database) instance I of a schema R is a function from R such that for each R in R, I(R) is
a relation over R.

ExampPLE 20.1.2 To illustrate this definition, an instance J of {R, Ry, R3} where

sort(Ry) = sort(R3) = (A :dom, B : {{A| : dom, A; : dom)}) and
sort(Ry) = (A :dom, A| : dom, A, : dom)

is shown in Fig. 20.3.

Variations

To conclude this section, we briefly mention some variations of the complex value model.
The principal one that has been considered is the nested relation model. For nested rela-
tions, set and tuple constructors are required to alternate (i.e., set of sets and tuple with a
tuple component are prohibited). For instance,

11=(A,B,C:{(D,E:{(F,G)})}) and
n=(A, B, C:{{(E:{{(F,G)})})

are nested relation sorts whereas
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A B A A A A B
dy dy dy
A A d, dy d, A Ay
dl dl d2 dl d5 d() dl dl d2
d’; d4 d2 dl d3 d3 d4
d2 d2 d4 d5 d6
AL Ay
dl d3 d4 Al A2
d5 dﬁ d2 dl d3
dy d,
A A
d2 d] d3
dy dy
J(Ry) J(Ry) J(R3)

Figure 20.3: A database instance

3=(A,B,C:(D,E:{{F,G)})) and
= (A, B,C:{{{F,G)}})

are not. (For 13, observe two adjacent tuple constructors; there are two set constructors
for 74.)

The restriction imposed on the structure of nested relations is mostly cosmetic. A more
fundamental constraint is imposed in so-called Verso-relations (V-relations).

As with nested relations, set and tuple constructors in V-relations are required to
alternate. A relation is defined recursively to be a set of tuples, such that each component
may itself be a relation but at least one of them must be atomic. The foregoing sort 7; would
be acceptable for a V-relation whereas sort 7, would not because of the sort of tuples in the
C component.

A further (more radical) assumption for V-relations is that for each set of tuples, the
atomic attributes form a key. Observe that as a consequence, the cardinality of each set in
a V-relation is bounded by a polynomial in the number of atomic elements occurring in the
V-relation. This bound certainly does not apply for a relation of sort {dom} (a set of sets)
or for a nested relation of sort

(A:{(B :dom)}),

which is also essentially a set of sets. The V-relations are therefore much more limited data
structures. (See Exercise 20.1.) They can be viewed essentially as flat relational instances.
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20.2 The Algebra

We now define a many-sorted algebra, denoted ALG” (for complex values). Like relational
algebra, ALG® is a functional language based on a small set of operations. This section first
presents a family of core operators of the algebra and then an extended family of operators
that can be simulated by them. At the end of the section we introduce an important subset
of ALG®, denoted ALG"~.

The Core of ALG®Y

Let 1, I, I, ... berelations of sort 7, 71, T2, . . . respectively. It is important to keep in mind
that a relation of sort t is a set of values of sort 7.

Basic set operations: If 1) = 1y, then Iy N I, 11 U I, I} — I, are relations of sort 71, and
their values are defined in the obvious manner.
Tuple operations: If I is a relation of sort T = (B : 11, ..., By : T¢), then
* 0,([) is arelation of sort 7.
The selection condition y is (with obvious restrictions on sorts) of the form B; = d,
B; = Bj, B; € Bj or B; = B;.C, where d is a constant, and it is required in the last
case that t; be a tuple sort with a C field. Then

oy (D =(lvelvEy),

where = is defined by

- (...,Bi:vi,...)|=B,-=difv,<=d,

*(....,Bi:v,...,Bj:vj,...) =B =Bjifv; =v;, and

. (...,B,‘ZU,‘,...,BjZUj,...)|=Bl‘€Bjifvi€Uj.

. (...,B,‘ZU,‘,...,B]‘Z(...,CZUj,...),...)|=Bi=Bj.Cifvi=Uj.
* g, p(I), | <kisarelation of sort (By : 1, ..., By : 1) with

7By, 8 () ={ (Bi:vi,.... By |
Avigq, .., vk((Brivg, ..., Beivg) € D).

Constructive operations

* powerset(I) is a relation of sort {r} and
powerset(I) ={v|v C I}

o If Ay, ..., A, are distinct attributes, tup_creates,. a,(I1, ..., I,) is of sort (Ay :
T1,..., A, Ty), and

tup_createp,,. A, (1, ..., L) ={{A1:v1,..., Ay 1 o) | Vi (v; € 1))
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e set_create(I) is of sort {t}, and set_create(I) = {I}.
Destructive operations

 If T = {1'}, then ser_destroy(I) is a relation of sort t’ and
set_destroy(I) =UIl ={w |Jv e I, w € v}.
 If I is of sort (A : '), tup_destroy(I) is a relation of sort 7/, and
tup_destroy(I) ={v | (A :v) € I}.

We are now prepared to define the (core of the) language ALG®. Let R be a database
schema. A query returns a set of values of the same sort. By analogy with relations, a query
of sort 7 returns a set of values of sort t. ALG®” queries and their answers are defined as
follows. There are two base cases:

Base values: For each relation name R in R, R is an algebraic query of sort sort(R). The
answer to query R is I(R).

Constant values: For each element a, {a} is a (constant) algebraic query of sort dom. The
answer to query {a} is simply {a}.

Other queries of ALG®” are obtained as follows. If g1, ¢2, . . . are queries, y is a selection
condition, and A1, ... are attributes,

q1Mqa2, 91U q2, q1 — q2,

Oy (ql)s TTAq,..., Ak(QI), tup_createAl ..... Ak(qls s Clk),
powerset(q1), tup_destroy(q1), set_destroy(q1),
set_create(q1)

are queries if the appropriate restrictions on the sorts apply. (Note that because of the
sorting constraints, tup_destroy and set_destroy cannot both be applicable to a given ¢g1.)
The sort of a query and its answer are defined in a straightforward manner.

To illustrate these definitions, we present two examples. We then consider other alge-
braic operators that are expressible in the algebra. In Section 20.4 we provide several more
examples of algebraic queries.

ExampLE 20.2.1 Consider the instance J of Fig. 20.3. Then one can find in Fig. 20.4

Ji =[oa=¢,(RDID), J=mp(J1),
J3 = tup_destroy(J3), Jy = set_destroy(J3),
Js = powerset(Jy), Je = tup_createc(Jy).

Also observe that

Js = [powerset (set_destroy(tup_destroy(mwg(oa=4,(R1))))1(J).
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A B B A A
Al A2 Al A2 Zl 23
d | a4 4 dy ds >
4 d, 4 d,
Ji Js J3
A, A, A c
d d A A
d, d
b dy dy ds
A Ay
4 ds c
A1 A2 Al AZ
dy dy dy dy
A Ay
4 ds
dy d,
74 Js Js

Figure 20.4: Algebraic operations

ExAMPLE 20.2.2 In this example, we illustrate the destruction and construction of a
complex value. Consider the relation

I={{A:a,B:{b,c},C:{A:d,B:{e, fIN)

Then

[(7r 4 o tup_destroy)
U (mp o tup_destroy o set_destroy)
U (;t¢ o tup_destroy o w4 o tup_destroy)
U (¢ o tup_destroy o mp o tup_destroy o set_destroy)](I)
={a,b,c,d,e, f}.
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We next reconstruct / from singleton sets:

I =tup_create p.c({a}, set_create({b} U {c}),
tup_create s p({d}, set_create({e} U {f}))).

Additional Algebraic Operations

There are infinite possibilities in the choice of algebraic operations for complex values.
We chose to incorporate in the core algebra only a few basic operations to simplify the
formal presentation and the proof of the equivalence between the algebra and calculus.
However, making the core foo reduced would complicate that proof. (For example, the
operator sef_create can be expressed using the other operations but is convenient in the
proof.) We now present several additional algebraic operations. It is important to note that
all these operations can be expressed in complex value algebra. (In that sense, they can
be viewed as macro operations.) Furthermore, all but the nest operator can be expressed
without using the powerset operator.
We first generalize constant queries.

Complex constants: It is easy to see that the technique of Example 20.2.2 can be gener-
alized. So instead of simply {a} for a atomic, we use as constant queries arbitrary
complex value sets.

We also generalize relational operations.

Renaming: Renaming can be computed using the other operations, as illustrated in Sec-
tion 20.4 (which presents examples of queries).

Cross-product: For i in [1,2], let I; be a relation of sort
T = (Bi : r{,..., B;[ : ‘L';-l,>
and let the attribute sets in 71, 7 be disjoint. Then I x I is the relation defined by
sort(ly x L) =(B| :t|,....B} 1t} . B{:7{..... B} :1})
and

1. 1 1. 1 p2..2 2..2
I x L={(B .xl,...,le .xj],Bl .xl,...,sz.sz) |
(Bi:xi,...., Bl :x})elforie[l,2]}.

It is easy to simulate cross-product using the operations of the algebra. This is also

illustrated in Section 20.4.

Join: This can be defined in the natural manner and can be simulated using cross-product,
renaming, and selection.

It should now be clear that complex value algebra subsumes relational algebra when
applied to flat relations. We also have new set-oriented operations.



518 Complex Values

N-ary set_create: We introduced tup_create as an n-ary operation. We also allow n-ary
set_create with the meaning that

set_create(ly, ..., I,) = set_create(I1) U - - - U set_create(l,).

Singleton: This operator transforms a set of values {ay, ..., a,} into a set {{a}, ..., {a,}}
of singletons.

Nest, unnest: Less primitive interesting operations such as nest, unnest can be considered.
For example, for J of Fig. 20.3 we have

unnestg(J(R1)) = J(R») and
nestp—(a,A,)(J(R2)) = J(R3).

More formally, suppose that we have R and S with sorts

sort(R) = (Ay:ty, ..., Ap ity B i {{Ak1 i Tk, -, An s ) )
sort(S) = <A1 T, ..., Ag ‘L'k,Ak+1 DTkl e Ay 'L’n).

Then for instances I of R and J of S, we have

unnestg(I) = {(A1:x1,..., Ay x,) | Ay

(Ap:xg, ..., Ag i xk, Bry) el and (Aggq : Xkg1s - -5 Ap 1 Xp) € 3}
nestB=(Ag..... Ay ={{A1:x1,..., A xx, B y) |

BF#y={(Aksr1: Xkt1s---> Anixn) | (A1 X, ..., Ay i xpy) € T}

Observe that

unnest p(nestp=(A, A, (J(R2))) = J(R2).
nestp—(, A, (unnestg(J(R1))) # J(Ry).

This is indeed not an isolated phenomenon. Unnest is in general the right inverse of
nest (nestp—q o unnestp is the identity), whereas unnest is in general not information
preserving (one-to-one) and so has no right inverse (see Exercise 20.8).

Relational projection and selection were filtering operations in the sense that intu-
itively they scan a set and keep only certain elements, possibly modifying them in a uniform
way. The filters in complex value algebra are more general. Of course, we shall allow
Boolean expressions in selection conditions. More interestingly, we also allow set com-
parators in addition to €, such as 3, C, €, D, 2 and negations of these comparators (e.g.,
&). The inclusion comparator C plays a special role in the calculus. We will see in Sec-
tion 20.4 how to simulate selection with C.

Selection is a predicative filter in the sense that a predicate allows us to select some
elements, leaving them unchanged. Other filters, such as projection, are map filters. They
transform the elements. Clearly, one can combine both aspects and furthermore allow more
complicated selection conditions or restructuring specifications. For instance, suppose I is
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a set of tuples of sort
(A:dom, B : (C: (E:{dom}, E':dom), C’: {dom})).
We could use an operation that first filters all the values matching the pattern
(A:x,B:(C:(E:y,E':2),C :{x});
and then transforms them into
(A:(yU{x}),B:y,C:2z).
This style of operations is standard in functional languages (e.g., apply-to-all in {p).

REMARK 20.2.3 As mentioned earlier, all of the operations just introduced are express-
ible in ALG®”. We might also consider an operation to iterate over the elements of a set
in some order. Such an operation can be found in several systems. As we shall see in Sec-
tion 20.6, iteration is essentially expressible within ALG. On the other hand, an iteration
that depends on a specific ordering of the underlying domain of elements cannot be simu-
lated using ALG® unless the ordering is presented as part of the input. |

In the following sections, we (informally) call extended algebra the algebra consisting
of the operations of ALG” and allowing complex constants, renaming, cross-product, join,
n-ary set_create, singleton, nest, and unnest.

An important subset of ALG®, denoted ALGV~, is formed from the core operators of
ALG® by removing the powerset operator and adding the nest operator. As will be seen in
Section 20.7, although the nest operator has the ability to construct sets, it is much weaker
than powerset. When restricted to nested relations, the language ALG"~ is usually called
nested relation algebra.

20.3 The Calculus

The calculus is modeled after a standard, first-order, many-sorted calculus. However, as
we shall see, calculus variables may denote sets, so the calculus will permit quantification
over sets (something normally considered to be a second-order feature). For complex
value calculus, the separation between first and second order (and higher order as well)
is somewhat blurred. As with the algebra, we first present a core calculus and then extend
it. The issues of domain independence and safety are also addressed.

For each sort, we assume the existence of a countably infinite set of variables of that
sort. A variable is atomic if it ranges over the sort dom. Let R be a schema. A term is an
atomic element, a variable, or an expression x.A, where x is a tuple variable and A is an
attribute of x. We do not consider (yet) fancier terms. A positive literal is an expression of
the form
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/

R(@), t=t, tet, or tCVt,

where R € R, 1,1’ are terms and the appropriate sort restrictions apply.! Formulas are
defined from atomic formulas using the standard connectives and quantifiers: A, v, =, V, 3.
A query is an expression {x | ¢}, where formula ¢ has exactly one free variable (i.e. x). We
sometimes denote it by ¢(x). The calculus is denoted CALC®".

The following example illustrates this calculus.

ExampLE 20.3.1 Consider the schema and the instance of Fig. 20.3. We can verify that
J(Ry) is the answer on instance J to the query

(x|3y,z, 7 u,v,w (RIO)AYA=uArny.B=z
ANleznd Al=vAZ Ay=w
AXA=unx.Ai=vAx.Ay=w)},

where the sorts of the variables are as follows:
sort(x) = (A, Ay, A), sort(y) = (A, B : {{A1, A2)}),

sort(u) = sort(v) = sort(w) =dom, sort(z’) = (A, Aa),
sort(z) ={(A1, A2)}.

We could also have used an unsorted alphabet of variables and sorted them inside the
formula, as in

{x:(A, A1, A2) | Fy: (A, B:{(A1, A)}),
2:{(A1, A2)}, 2/ 1 (A1, Ag),
u :dom, v : dom, w : dom
(Riy) Ay A=uny.B=z
Al eznZd Al=vAa A =w
AXA=uAx.Ai=vAXx.Ay=w)}.

The key difference with relational calculus is the presence of the predicates € and C,
which are interpreted as the standard set membership and inclusion. Another difference (of
a more cosmetic nature) is that we allow only one free variable in relation atoms and in
query formulas. This comes from the stronger sorts: A variable may represent an n-tuple.

The answer to a query g on an instance I, denoted g (I), is defined as for the relational
model. As in the relational case, we may define various interpretations, depending on the
underlying domain of base values used. As with relational calculus, the basis for defining
the semantics is the notion

I satisfies ¢ for v relative to d.

!Strictly speaking, the symbols =, C and € are also many sorted.
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[Recall that v is a valuation of the free variables of ¢ and d is an arbitrary set of elements
containing adom(g, I).]

Consider the definition of this notion in Section 5.3. Cases (a) through (g) remain valid
for the complex object calculus. We have to consider two supplementary cases. Recall that
for equality, we had case (b):

(b) I =qo[v]if o = (s =s")and v(s) = v(s).
In the same spirit, we add

(h-1) I =qo[v]if o =(ses’)and v(s) € v(s)
(h-2) I=q¢[v]if o = (s C5) and v(s) S v(s").

This formally states that € is interpreted as set membership and C as set inclusion (in the
same sense that as = is interpreted as equality).

The issues surrounding domain independence for relational calculus also arise with
CALC*®. We develop a syntactic condition ensuring domain independence, but we also
occasionally use an active domain interpretation.

Extensions

As in the case of the algebra, we now consider extensions of the calculus that can be
simulated by the core syntax just given.

The standard abbreviations used for relational calculus, such as the logical connectives
—, <, <>, can be incorporated into CALC”. Using these connectives, it is easy to see the
nonminimality of the calculus: Each literal x C y can be replaced by Vz(z € x — z € y),
where z is a fresh variable.

Arity In the core calculus, only relation atoms of the form R(¢) are permitted. Suppose
that the sort of R is (A} :1y,..., A, : T,) for some n. Then R(uy, ..., u,) is a shorthand
for

YR Ay Ar=ur A Ny.Ap = up),
where y is a new variable. In particular, if Ry is a relation of sort ( ) (n = 0), observe that

the only value of that sort is the empty tuple. Thus a variable y of that sort has only one
possible value, namely ( ). Thus for such y, we can use the following expression:

Ro() for 3Fy(Ro(y))-
Constructed Terms Next we allow constructed terms in the calculus such as
{x,b}, x.A.C, (Bi:a,By:y).

More formally, if 71, ..., #; are terms and By, ..., By are distinct attributes, then (B :
t1, ..., By : ty) is a term. Furthermore, if the #; are of the same sort, {t, ..., #;} is a term;
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and if 7 is a tuple term with attribute C, then ¢1.C is a term. The sorts of terms are defined
in the obvious way. Note that a term may have several sorts because of the empty set. (We
ignore this issue here.)

The use of constructed terms can be viewed as syntactic sugaring. For instance, sup-
pose that the term {a, y} occurs in a formula . Then  is equivalent to

Ix(W AVzZ(zex < (z=aVz=Y))),
where ¥/’ is obtained from i by replacing the term {a, y} by x (a fresh variable).

Complex Terms We can also view relations as terms. For instance, if R is a relation of
sort (A, B), then R can be used in the language as a term of sort {{A, B)}. We may then
consider literals such as x € R, which is equivalent to R(x); or more complex ones such as
S € T, which essentially means

(T () AVx(x €y < SX))).

The previous extension is based on the fact that a relation (in our context) can be
viewed as a complex value. This is again due to the stronger sort system. Now the answer
to a query g is also a complex value. This suggests considering the use of queries as terms
of the language. We consider this now: A query g = {y | ¥ (y)} is a legal term that can be
used in the calculus like any other term. More generally, we allow terms of the form

A A G T ) B

where the free variables of ¢ are y, yi, ..., y,. Intuitively, we obtain queries by providing
bindings for yy, ..., y,. We will call such an expression a parameterized query and denote
itg(y1, ..., yn) (Where yq, ..., y, are the parameters).

For instance, suppose that a formula liked (x, y) computes the films y that person x
liked; and another one saw(x, y) computes those that x has seen. The set of persons who
liked all the films that they saw is given by

{x | {y|liked(x, y)} S {y | saw(x, y)} }.

The following form of literals will play a particular role when we study safety for this
calculus:
xz{y | ‘(//(yayla""yn)}a
x/ € {y | I/f(y, )’1, ceey )’n)}, and
x” g {y | 1//()’: yls ) )’n)}a
where y is a free variable of . Like the previous extensions, the parameterized queries

can be viewed simply as syntactic sugaring. For instance, the three last formulas are,
respectively, equivalent to
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Vy(y ex < ¥),
Jy(x'=y A ), and
Vy(y e x”" — ).

In the following sections, we (informally) call extended calculus the calculus consist-
ing of CALC®” extended with the abbreviations described earlier (such as constructed and
complex terms and, notably, parameterized queries).

20.4 Examples

We illustrate the previous two sections with a series of examples. The queries in the
examples apply to schema {R, S} with

sort(R) = (A :dom, A" : dom),
sort(S) = (B : dom, B" : {dom}).

For each query, we give an algebraic and a calculus expression.
ExAamMPpLE 20.4.1 The union of R and a set of two constant tuples is given by
{rIRF)Vr=(A:3,A:5vr=(A:0,A":0)}
or
RU{(A:3,A":5),(A:0,A":0)}.
ExAMPLE 20.4.2 The selection of the tuples from S, where the first component is a
member of the second component, is obtained with

{s|S(s)As.Bes.B'} or opep(S).

ExAMPLE 20.4.3 The (classical) cross-product of R and S is the result of
{t|3r,s(RE)ANSE) At =(A:r.A, A :r.A',B:s.B, B :5.B))}
or
TTaaBB (Oa=a".4(0a=a" A (0p=p" B(0p'=p"B(q))))),

where g is
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tup_create 4'pp' a» g (tup_destroy(m 4(R)),
tup_destroy(mw 4/ (R)),
tup_destroy(mp(S)),
tup_destroy(mp/(S)), R, S).

ExAMPLE 20.4.4 The join of R and S on A = B. This query is the composition of the
cross-product of Example 20.4.3, with a selection. In Example 20.4.3, let the formula
describing the cross-product be ¢3 and let (R x S) be the algebraic expression. Then the
(A = B) join of R and S is expressed by

{t | p3(¢) ANt. A=t.B} or os—p(R xS).
ExAMPLE 20.4.5 The renaming of the attributes of R to A, A, is obtained in the calculus
by
{t|Ir(RG) At Al =r.ANnt.Ay=r.A))}
with ¢ of sort (A : dom, A, : dom). In the algebra, it is given by

A, 4,(0Ag.A=A,(04y.a'=4, (TUp_create pga, A,
(R, tup_destroy(m s (R)), tup_destroy(mwa/(R)))))).

ExaMPLE 20.4.6 Flattening S means producing a set of flat tuples, each of which con-
tains the first component of a tuple of S and one of the elements of the second component.
This is the unnest operation unnest g/(-) in the extended algebra, or in the calculus

{t |3s(S(s) At.B=5.BAt.C €s.B)),

where ¢ is of sort (B, C). In the core algebra, this is slightly more complicated. We first
obtain the set of values occurring in the B’ sets using

E| = tup_createc (set_destroy(tup_destroy(mp/(S)))).

We can next compute (E7 x S) (using the same technique as in Example 20.4.3). Then the
desired query is given by

mpc(ocep (E1 X S)).

Flattening can be extended to sorts with arbitrary nesting depth.

ExamMPLE 20.4.7 The next example is a selection using C. Consider a relation 7' of sort
(C : {dom}, C’: {dom}). We want to express the query
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{t| T(t)At.C Ct.C'}
in the algebra. We do this in stages:

F1 =ocrec(T X tup_createcr(set_destroy(tup_destroy(nc(T))))),
Fy=o0crec/(F1),
F3s=F — F,,
Fy=T —nce(F3).
Observe that
1. Atuple (C:U,C’:V,C”:u)isin F1if (C:U,C’:V)isin T and u is in U.

2. Atuple (C:U,C":V,C":u)isin F,if (C:U,C’:V)isinT and u is in U and
V.

3. Atuple (C:U,C":V,C" :u)isin F3if (C:U,C’:V)isinT andu isinU — V.

4. A tuple (C:U,C’:V)isin Fyifitis in T and there is no u in U — V (i.e.,
Ucv).

ExampLE 20.4.8 This example illustrates the use of nesting and of sets. Consider the
algebraic query

nestc—(a) © nestci—(An © oc=c’ o unnestc o unnestc/(R).

It is expressed in the calculus by

{(x,y)|Ju(xeunyeu
Au={x"| R, y)}
Au={y [{x"| R&x', Y} =u})}.

A consequence of Theorem 20.7.2 is that this query is expressible in relational calculus or
algebra. It is a nontrivial exercise to obtain a relational query for it. (See Exercise 20.24.)

EXAMPLE 20.4.9 Our last example highlights an important difference between the flat
relational calculus and CALC®. As shown in Proposition 17.2.3, the flat calculus cannot
express the transitive closure of a binary relation. In contrast, the following CALC®” query
does:

{y | Vx(closed(x) A contains_R(x) — y € x)},

where

e closed(x) =

Vu,v,w({A:u, A :v)ex A{A:v,A:w)ex — (A:u, A" :w) €x);



526 Complex Values

e contains_R(x) =Vz(R(z) —> z € x);

e sort(x) = {sort(R)}, sort(y) = sort(z) = sort(R); and
sort(u) = sort(v) = sort(w) = dom.

Intuitively, the formula specifies the set of pairs y such that y belongs to each binary re-
lation x containing R and transitively closed. This construction will be revisited in Sec-
tion 20.6.

20.5 Equivalence Theorems

This section presents three results that compare the complex value algebra and calculus.
First we establish the equivalence of the algebra and the domain-independent calculus.
Next we develop a syntactic safeness condition for the calculus and show that it does not
reduce expressive power. Finally we develop a natural syntactic condition on CALC*” that
yields a subset equivalent to ALG~.

Our first result is as follows:

THEOREM 20.5.1 The algebra and the domain independent calculus for complex values
are equivalent.

In the sketch of the proof, we present a simulation of the core algebra by the extended
calculus and the analogous simulation in the opposite direction. An important component
of this proof—namely, that the extended algebra (calculus) is no stronger than the core
algebra (calculus)—is left for the reader (see Exercises 20.6, 20.7, 20.8, 20.10, and 20.11).

From Algebra to Calculus

We now show that for each algebra query, there is a domain-independent calculus query
equivalent to it.

Let g be a named algebra query. We construct a domain-independent query {x | ¢4}
equivalent to ¢g. The formula ¢, is constructed by induction on subexpressions of g. For a
subexpression E of g, we define ¢ as follows:

(a) E is R for some R € R: ¢g is R(x).
(b) Eis{a}: ppisx =a.
(¢) Eisoy(Ey): ¢gis g, (x) AT, where I' is

xAi=xAjify=A;=A;; xA=aify=A=a;
xAjexAjify=A,€A;;, xA=xA;Cify=A;=A;.C.

d) Eisma,,.. a4, (ED: gEis

Ely(x = (Ail : y~Ai1a ey Aik : y~Aik> AN (pEl(y)).
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(e) For the basic set operations, we have

(pElﬂEz(x) = @El(-x) A @Ez(x)v
‘PEluEz(x) = @El(x) \% ¢E2(x)7
(pEl—Ez(x) = @El(x) N _'ngz(x)

(f) E is powerset(E1): pgisx C{y | ¢g,(»)}.
(g) Eisset_destroy(E1): gpisAy(x € y A @g, ().

(h) E is tup_destroy(E1): ¢ is Ay((A : x) =y A @g,(y)), where A is the name of
the field (of y).

(i) Eistup_creates,,.  a,(E1, ..., Ey): @gis
Iyt e e = (A1 Y1, - Ap i) AQE (VD A - AQE, (D).

(j) E is set_create(E1): x ={y | ¢g,(y)}.

We leave the verification of this construction to the reader (see Exercise 20.13). The
domain independence of the obtained calculus query follows from the fact that algebra
queries are domain independent.

From Calculus to Algebra

We now show that for each domain-independent query, there is a named algebra query
equivalent to it.

Let g = {x | ¢} be a domain-independent query over R. As in the flat relational case,
we assume without loss of generality that associated with each variable x occurring in ¢
(and also variables used in the following proof) is a unique, distinct attribute A, in att. We
use the active domain interpretation for the query, denoted as before with a subscript adom.

The crux of the proof is to construct, for each subformula i of ¢, an algebra formula
Ey that has the property that for each input I,

El/f(I) = {y|3Ix,...., %y = <Ax1 XLy s Ax,, X)) AV - X)) Yadom (D),

where x1, ..., x, is a listing of free(y).
This construction is accomplished in three stages.

Computing the Active Domain The first step is to construct an algebra query Eggom
having sort dom such that on input instance I, Eg,,(I) = adom(q, I). The construction
of E qom 1s slightly more intricate than the similar construction for the relational case. We
prove by induction that for each sort t, there exists an algebra operation F; that maps a set
I of values of sort 7 to adom(I). This induction was not necessary in the flat case because
the base relations had fixed depth. For the base case (i.e., T = dom), it suffices to use for
F; an identity operation (e.g., tup_create 4 o tup_destroy). For the induction, the following
cases occur:
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1. tis{Ay:11,...,A,:1y) forn > 2. Then F; is

Fiaroy@@a) U---U Fia,q,)(Ta,).

2. tis (Ay:11). Then F; is Fy (tup_destroy).
3. tis{r1}). Then F; is Fy,(set_destroy).

Now consider the schema R. Then for each R in R, Fj,.(r) maps a relation / over R to
adom([I). Thus adom(q, I) can be computed with the query

Eadom = Fsort(Rl)(Rl) u..-u Fxort(Rm)(Rm) Ulaiju---u {ap}’

where Ry, ..., Ry, is the list of relations in R and ay, .. ., a, is the list of elements occur-
ring in q.

Constructing Complex Values In the second stage, we prove by induction that for each
sort T, there exists an algebra query G that constructs the set of values I of sort T such
that adom(I) € adom(q, I). For T = dom, we can use E 4. For the induction, two cases
occur:

1. tis(Ay:71,..., Ay ). Then G is tup_createy,,. A,(Gey,s - .., Gy,).
2. tis{r1}. Then G; is powerset(G+,).

Last Stage We now describe the last stage, an inductive construction of the queries Ey
for subformulas ¥ of ¢. We assume without loss of generality that the logical connectives
Vv and V do not occur in ¢. The proof is similar to the analogous proof for the flat case.
We also assume that relation atoms in ¢ do not contain constants or repeated variables. We
only present the new case (the standard cases are left as Exercise 20.13). Let ¢ be x € y.
Suppose that x is of sort 7, so y is of sort {t}. The set of values of sort T (or {r}) within the
active domain is returned by query G, or G(¢}. The query

OA €A, (IMP_CVeateAx,Ay(Gra G{r}))

returns the desired result.

Observe that with this construction, E, returns a set of tuples with a single attribute
Ay. The query g is equivalent to tup_destroy(Ey).

As we did for the relational model, we can define a variety of syntactic restrictions of
the calculus that yield domain-independent queries. We consider such restrictions next.

Safe Queries

We now turn to the development of syntactic conditions, called safe range, that ensure
domain independence. These conditions are reminiscent of those presented for relational
calculus in Chapter 5. As we shall see, a variant of safe range, called strongly safe range,
will yield a subset of CALC®, denoted CALC"~, that is equivalent to ALG~.
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We could define safe range on the core calculus. However, such a definition would be
cumbersome. A much more elegant definition can be given using the extended calculus.
In particular, we consider here the calculus augmented with (1) constructed terms and (2)
parameterized queries.

Recall that intuitively, if a formula is safe range, then each variable is bounded, in the
sense that it is restricted by the formula to lie within the active domain of the query or the
input. We now define the notions of safe formulas and safe terms. To give these definitions,
we define the set of safe-range variables of a formula using the following procedure, which
returns either the symbol L (which indicates that some quantified variable is not bounded)
or the set of free variables that are bounded. In this discussion, we consider only formulas
in which universal quantifiers do not occur.

In the following procedure, if several rules are applicable, the one returning the largest
set of safe-range variables (which always exists) is chosen.

procedure safe-range (sr)

input: a calculus formula ¢

output: a subset of the free variables of ¢ or L. (In the following, for each Z, 1 U Z =
1lnNnz=1-7Z=7Z-1=1)

begin

(pred is a predicate in {=, €, C})

if for some parameterized query {x | ¥} occurring as a term in ¢, x & sr(y) then
return |

case ¢ of

R(t) 2 sr(p) = free(t);
(t pred t' A)  :if y is safe and free(t') C free(r)
then sr () = free(t) U free(V);

t pred t’ 2if free(t’) = sr(t’) then sr(p) = free(t') U free(t);
else sr(p) = 0;

P1LA ssr(@) = sr(pn) Usr(ga);

Y1V @ 2sr(@) = sr(en) Nsr(e2);

—¢1 2sr(p) =0,

Ax ¢ cifx e sr(pr)

then sr(p) = sr(p1) — {x}
else return L

end;

We say that a formula ¢ is safe if s7(¢) = free(¢); and a query q is safe if its associated
formula is safe.

It is important to understand how new sets are created in a safe manner. The next
example illustrates two essential techniques for such creation.
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ExAMPLE 20.5.2 Let R be a relation of sort (A, B). The powerset of R can be obtained
in a safe manner with the query

xlx<{yl RO}

For {y | R(y)} is clearly a safe query (by the first case). Now letting r = x, t' = {y | R(y)},
the formula is safe (by the third case).
Now consider the nesting of the B column of R. It is achieved by the following query:

fxlx=(z, {y | Rz »H ATV (R )}

Lett=x, ' =(z,{y| R(z, y)}) and ¥ = Iy’ (R(z, y’)). First note that sr(R(z, y)) con-
tains y, so the parameterized query {y | R(z, ¥)} can be used safely. Next the formula v is
safe. Finally the only free variable in ¢’ is z, which is also free in . Thus x is safe range
(by the second case) and the query is safe.

As detailed in Section 20.7, the complex value algebra and calculus can express
mappings with complexity corresponding to arbitrarily many nestings of exponentiation.
In contrast, as discussed in that section, the nested relation algebra ALG®~, which uses
the nest operator but not powerset, has complexity in PTIME. Interestingly, there is a minor
variation of the safe-range condition that yields a subset of the calculus equivalent to
ALG~. Specifically, a formula is strongly safe range if it is safe range and the inclusion
predicate does not occur in it. In the previous example, the nesting is strongly safe range
whereas powerset is not.

We now have the following:

THEOREM 20.5.3

(a) The safe-range calculus, the domain-independent calculus, and ALG®” coincide.

(b) The strongly safe-range calculus and ALG"~ coincide.

Crux Consider (a). By inspection of the construction in the proof that ALG® & CALC®,
each algebra query is equivalent to a safe-range calculus query. Clearly, each safe-range
calculus query is a domain-independent calculus query. We have already shown that each
domain-independent calculus query is an algebra query.

Now consider (b). Observe that in the proof that ALG®” T CALC, C is used only
for powerset. Thus each query in ALG®~ is a strongly safe-range query. Now consider
a strongly safe-range query; we construct an equivalent algebra query. We cannot use the
construction from the proof of the equivalence theorem, because powerset is crucial for
constructing complex domains. However, we can show that this can be avoided using the
ranges of variables. (See Exercise 20.16.) More precisely, the brute force construction of
the domain of variables using powerset is replaced by a careful construction based on the
strongly safe-range restriction. The remainder of the proof stays unchanged. m
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Because of part (b) of the previous result, we denote the strongly safe-range calculus
by CALC“~.

20.6 Fixpoint and Deduction

Example 20.4.9 suggests that the complex value algebra and calculus can simulate itera-
tion. In this section, we examine iteration in the spirit of both fixpoint queries and datalog.
In both cases, they do not increase the expressive power of the algebra or calculus. How-
ever, they allow us to express certain queries more efficiently.

Fixpoint for Complex Values

Languages with fixpoint semantics were considered in the context of the relational model
to overcome limitations of relational algebra and calculus. In particular, we observed
that transitive closure cannot be computed in relational calculus. However, as shown by
Example 20.4.9, transitive closure can be expressed in the complex value algebra and
calculus. Although transitive closure can be expressed in that manner, the use of powerset
seems unnecessarily expensive. More precisely, it can be shown that any query in the
complex value algebra and calculus that expresses transitive closure uses exponential space
(assuming the straightforward evaluation of the query). In other words, the blowup caused
by the powerset operator cannot be avoided. On the other hand, a fixpoint construct allows
us to express transitive closure in polynomial space (and time). It is thus natural to develop
fixpoint extensions of the calculus and algebra.

We can provide inflationary and noninflationary extensions of the calculus with recur-
sion. As in the relational case, an inflationary fixpoint operator /LJTr allows the iteration of a
CALC® formula ¢(T) up to a fixpoint. This essentially permits the inductive definition of
relations, using calculus formulas. The calculus CALC” augmented with the inflationary
fixpoint operator is defined similarly to the flat case (Chapter 14) and yields CALC® + ™.
We only consider the inflationary fixpoint operator. (Exercise 20.19 explores the noninfla-
tionary version.)

THEOREM 20.6.1 CALC® + ™ is equivalent to ALG” and CALC*".

The proof of this theorem is left for Exercise 20.18. It involves simulating a fixpoint
in a manner similar to Example 20.4.9.

Before leaving the fixpoint extension, we show how powerset can be computed by iter-
ating a ALG”~ formula to a fixpoint. (We will see later that powerset cannot be computed
in ALG“"~ alone.)

ExAMPLE 20.6.2 Consider a relation R of sort dom (i.e., a set of atomic elements). The
powerset of R is computed by {x | ur(¢(T))(x)}, where T is of sort {dom} and

(MM =[y=0Vv I, y(R&ATO)Ay=y U{x'}]
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This formula is in fact equivalent to a query in ALG"~. (See Exercise 20.15.) For example,
suppose that R contains {2, 3, 4}. The iteration of ¢ yields

Jo =90

J1 =@ ={0}

L =) =J21U{{2}, {3}, {4}

B3 =¢(h) =0U{{2,3},{2,4},{3,4}}
Js =93 =J3U{{2,3,4}},

and J4 is a fixpoint and coincides with powerset ({2, 3, 4}).

Datalog for Complex Values

We now briefly consider an extension of datalog to incorporate complex values. The basic
result is that the extension is equivalent to the complex value algebra and calculus. We
also consider a special grouping construct, which can be used for set construction in this
context.

In the datalog extension considered here, the predicates C and € are permitted. A rule
is safe range if each variable that appears in the head also appears in the body, and the
body is safe (i.e., the conjunction of the literals of the body is a safe formula). We assume
henceforth that rules are safe. Stratified negation will be used. The language is illustrated
in the following example.

ExXAMPLE 20.6.3 The input is a relation R of sort (A, B : {{C, C")}). Consider the query
defining an idb relation T, which contains the tuples of R, with the B-component re-
placed by its transitive closure. Let us assume that we have a ternary relation ins, where
ins(w, y, z) is interpreted as “z is obtained by inserting w into y.” We show later how to
define this relation in the language. The program consists of the following rules:

(rD) S(x,y) < R(x,y)

(r2) Sx,z) < S, y),ucy,vey,uC =v.C,ins((u.C,v.C"), y,2)
(r3) S'(x,2) < S(x,2),8(x,2),2C7, z2#7

(r4) T(x,z) < S(x,z2), =S'(x, 2).

The first two rules compute in S pairs corresponding to pairs from R, such that the second
component of a pair contains the corresponding component from the pair in R and possibly
additional elements derived by transitivity. Obviously, for each pair (x, y) of R, there is a
pair (x, z) in S, such that z is the transitive closure of y, but there are other tuples as well.
To answer the query, we need to select for each x the unique tuple (x, z) of S, where z is
maximal.? The third rule puts into S’ tuples (x, z) such that z is not maximal for that x. The
last rule then selects those that are maximal, using negation.

2 We assume, for simplicity, that the first column of R is a key. It is easy to change the rules for the
case when this does not hold.
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We now show the program that defines ins for some given sort t (the variables are of
sort {t} except for w, which is of sort 7):

super(w, y, 7) “—wez,y<z
not-min-super(w, y, z) < super(w, v, z), super(w, y, 7)),z Cz,7 #z

ins(w, y, 2) < super(w, y, z), ~not-min-super(w, y, z)

Note that the program is sort specific only through its dependence on the sorts of the
variables. The same program computes ins for another sort 7/, if we assume that the sort of
w is 7/ and that of the other variables is {t'}. Note also that the preceding program is not
safe. To make it safe, we would have to use derived relations to range restrict the various
variables.

We note that although we used C in the example as a built-in predicate, it can be
expressed using membership and stratified negation.

The proof of the next result is omitted but can be reconstructed reasonably easily using
the technique of Example 20.6.3.

THEOREM 20.6.4 A query is expressible in datalog®’ with stratified negation if and only
if it is expressible in CALC®".

The preceding language relies heavily on negation to specify the new sets. We could
consider more set-oriented constructs. An example is the grouping construct, which is
closely related to the algebraic nest operation. For instance, in the language LDL, the rule:

S(x, (y)) < R(x, y)

groups in S, for each x, all the y’s related to it in R (i.e., S is the result of the nesting of R
on the second coordinate).

The grouping construct can be used to simulate negation. Consider a query g whose
input consists of two unary relations R, S not containing some particular element @ and
that computes R — S. Query g can be answered by the following LDL program:

Temp(x,a) < R(x)
Temp(x, x) < S(x)
T(x,(y)) < Temp(x,y)
Res(x) <~ T(x,{a})

Note that for an x in R — §, we derive T (x, {a}); but for x in RN S, we derive
T (x, {x,a}) # T (x, {a}) because a is not in R.

From the previous example, it is clear that programs with grouping need not be mono-
tone. This gives rise to semantic problems similar to those of negation. One possiblity,
adopted in LDL, is to define the semantics of programs with grouping analogously to strat-
ification for negation.
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20.7 Expressive Power and Complexity

This section presents two results. First the expressive power and complexity of ALG"/
CALC* is established—it is the family of queries computable in hyperexponential time.
Second, we consider the expressive power of ALG®~/CALC®~ (i.e., in algebraic terms
the expressive power of permitting the nest operator, but not powerset). Surprisingly, we
show that the nest operator can be eliminated from ALG®’~ queries with flat input/ouput.

Complex Value Languages and Elementary Queries

We now characterize the queries in ALG” in terms of the set of computable queries in a
certain complexity class. First the notion of computable query is extended to the complex
value model in the straightforward manner. The complexity class of interest is the class of
elementary queries, defined next.

The hyperexponential functions hyp; for i in N are defined by

1. hypg(m) = m; and
2. hypi1(m) = 2"Pit™ for i > 0.

A query is an elementary query if it is a computable query and has hyperexponential time
data complexity’ w.r.t. the database size. By database size we mean the amount of space
it takes to write the content of the database using some natural encoding. Note that, for
complex value databases, size can be very different from cardinality. For example, the
database could consist of a single but very large complex value.

It turns out that a query is in ALG®"/CALC*" iff it is an elementary query.

THEOREM 20.7.1 A query is in ALG®"/CALC* iff it is an elementary query.

Crux It is trivial to see that each query in ALG®"/CALC® is elementary. All operations
can be evaluated in polynomial time in the size of their arguments except for powerset,
which takes exponential time.

Conversely, let ¢ be of complexity Ayp,,. We show how to compute it in CALC*".

Suppose first that an enumeration of adom(I) is provided in some binary relation succ.
(We explain later how this is done.) We prove that g can then be computed in CALC®'+u ™.
Let X° = adom(I) and for each i, X' = powerset(X'~"). Observe that for each X’, we can
provide an enumeration as follows: First succ provides the enumeration for X%; and for
each i, we define V <; U for U, V in X' if there exists x in U — V such that each element
larger than x (under <;_1) is in both or neither of U, V. Clearly, there exists a query in
CALC®+u™ that constructs X" and a binary relation representing <,,.

Now we view each element of X" as an atomic element. The input instance together
with X" and the enumeration can be seen as an ordered database with size the order of
hyp,,. Query q is now polynomial in this new (much larger) instance. Finally we can easily

3 We are concerned exclusively with the data complexity. Observe that when considering the union
of hyperexponential complexities, time and space coincide.
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extend to complex values the result from the flat case that CALC+u™ can express QPTIME
on ordered databases (Theorem 17.4.2). Thus CALC®+pu™" can also express all QPTIME
queries on ordered complex value databases, so g can be computed in CALC®+u* using
<y on X,. By Theorem 20.6.1, CALC+pu’t is equivalent to CALC®, so there exists a
CALC*® query ¢ computing ¢ if an (arbitrary) enumeration of the active domain is given
in some binary relation succ.

To conclude the proof, it remains to remove the restriction on the existence of an
enumeration of the active domain. Let ¢’ be the formula obtained from ¢ by replacing

1. succ by some fresh variable y (the sort of y is set of pairs); and
2. each literal succ(zt, t') by (t,t') € y.

Then ¢ can be computed by

Ay(p" A ).

where ¢ is the CALC® formula stating that y is the representation in a binary relation of
an enumeration of the active domain. (Observe that it is easy to state in CALC® that the
content of a binary relation is an enumeration.) M

On the Power of the nest Operator

The set-height of a complex sort is the maximum number of set constructors in any branch
of the sort. We can exhibit hierarchies of classes of queries in CALC” based on the set-
height of the sorts of variables used in the query. For example, consider all queries that
take as input a flat relational schema and produce as output a flat relation. Then for each
n > 0, the family of CALC® queries using variables that have sorts with set-height < n is
strictly weaker than the family of CALC® queries using variables that have sorts with set-
height <n 4+ 1. A similar hierarchy exists for ALG", based on the sorts of intermediate
types used. Intuitively, these results follow from the use of the powerset operator, which
essentially provides an additional exponential amount of scratch paper for each additional
level of set nesting.

The bottom of this hierarchy is simply relational calculus. Recall that ALG”~ can use
the nest operator but not the powerset operator. It is thus natural to ask, Where do ALG®"~/
CALC®~ (assuming flat input and output) lie relative to the relational calculus and the first
level of the hierarchy? Rather surprisingly, it turns out that the nest operator alone does
not increase expressive power. Specifically, we show now that with flat input and output,
ALG“~/CALC*® ™ is equivalent to relational calculus.

THEOREM 20.7.2 Let ¢ be a CALC®~/ALG®™ query over a relational database schema
R with output of relational sort S. Then there exists a relational calculus query ¢’ equivalent
to .

Crux The basic intuition underlying the proof is that with a flat input in CALC“"~ or
ALG®~, each set constructed at an intermediate stage can be identified by a tuple of atomic
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values. In terms of ALG"~, the intuitive reason for this is that sets can be created only in
two ways:

* by nest, which builds a relation whose nonnested coordinates form a key for the
nested one, and

* by set_create, which can build only singleton sets.

Thus all created sets can be identified using some flat key of bounded length. The sets
can then be simulated in the computation by their flat representations. The proof consists
of

* providing a careful construction of the flat representation of the sets created in the
computation, which reflects the history of their creation; and

* constructing a new query, equivalent to the original one, that uses only the flat
representations of sets.

The details of the proof are omitted. ™

Observe that an immediate consequence of the previous result is that transitive closure
or powerset are not expressible in ALG”™.

REMARK 20.7.3 The previous results focus on relational queries. The same technique
can be used for nonflat inputs. An arbitrary input I can be represented by a flat database
I; of size polynomial in the size of the input. Now an arbitrary ALG®"™ query on I can be
simulated by a relational query on If to yield a flat database representing the result. Finally
the complex object result is constructed in polynomial time. This shows in particular that
ALG®™ isin PTIME. M

20.8 A Practical Query Language for Complex Values

We conclude our discussion of languages for complex values with a brief survey of a frag-
ment of the query language O,SQL supported by the commercial object-oriented database
system O; (see Chapter 21). This fragment provides an elegant syntax for accessing and
constructing deeply nested complex values, and it has been incorporated into a recent in-
dustrial standard for object-oriented databases.

For the first example we recall the query

(4.3) What are the address and phone number of the Le Champo?

Using the CINEMA database (Fig. 3.1), this query can be expressed in O,SQL as

element select tuple ( t.address, t.phone )
from tin Location
where t.name = “Le Champo”
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The select-from-where clause has semantics analogous to those for SQL. Unlike SQL, the
select part can specify an essentially arbitrary complex value, not just tuples. A select-
from-where clause returns a set*; the keyword element here is a desetting operator that
returns a runtime error if the set does not have exactly one element.

The next example illustrates how O>SQL can work inside nested structures. Recall the
complex value shown in Fig. 20.2, which represents a portion of the CINEMA database.
Let the full complex value be named Films. The following query returns all movies for
which the director does not participate as an actor.

select m.Title
from fin Films
m in f.Movies
where f.Director not in select a
from a in m.Actors

0,SQL also provides a mechanism for collapsing nested sets. Again using the complex
value Films of Fig. 20.2, the following gives the set of all directors that have not acted in
any Hitchcock film.

select f.Director
from fin Films
where f.Director not in flatten select m.Actors
from g in Films
m in g.Movies
where g.Director = “Hitchcock”

Here the inner select-from-where clause returns a set of sets of actors. The keyword flatten
has the effect of forming the union of these sets to yield a set of actors.

We conclude with an illustration of how O,SQL can be used to construct a deeply
nested complex value. The following query builds, from the complex value Films of
Fig. 20.2, a complex value of the same type that holds information about all movies for
which the director does not serve as an actor.

select tuple ( Director: f.Director,
Movies: select tuple ( Title: m.Title,
Actors: select a
from a in m.Actors )
from m in f.Movies
where f.Director not in m.Actors )
from f in Films

“4In the full language O,SQL, a list or bag might also be returned; we do not discuss that here.
Furthermore, we do not include the keyword unique in our queries, although technically it should be
included to remove duplicates from answer sets.
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equivalence result is preserved with oracles. In particular, it is shown in [AB88] that if the
algebra and the calculus are extended with an identical set of oracles (i.e., sorted functions
that are evaluated externally), the equivalence result still holds.

The strongly safe-range calculus, and the equivalence of ALG*"~ and CALC®~, are
based on [AB88].

The fact that transitive closure can be computed in the calculus was noted in [AB8S].
The result that any algebra query computing transitive closure requires exponential space
(with the straightforward evaluation model) was shown in [SP94]. The equivalence be-
tween the calculus and various rule-based languages is from [AB88]. In the rule-based
paradigm, nesting can be expressed in many ways. A main difference between various pro-
posals of logic programming with a set construct is in their approach to nesting: grouping
in LDL [BNR"87], data functions in COL [AG91], and a form of universal quantification
in [Kup87]. In [Kup88], equivalence of various rule-based languages is proved. In [GG88],
it is shown that various programming primitives are interchangeable: powerset, fixpoint,
various iterators.

The correspondence between ALG“//CALC® queries and elementary queries is stud-
ied in [HS93, KV93a]. Hierarchies of classes of queries based on the level of set nesting
are considered in [HS93, KV93a]. Related work is presented in [Lie89a]. Exact complexity
characterizations are obtained with fixpoint, which is no longer redundant when the level
of set nesting is bounded [GV91].

Theorem 20.7.2 is from [PG88], which uses a proof based on a strongly safe calculus.
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The proof of Theorem 20.7.2 outlined in this chapter suggests a strong connection between
ALG®~ and the V-relation model.

Reference [BTBW92] introduces a rich family of languages for complex objects,
extended to include lists and bags, that is based on structural recursion. One language in this
family corresponds to the nested algebra presented in this chapter. Using this, an elegant
family of generalizations of Theorem 20.7.2 is developed in [Won93].

An extension of complex values, called formats [HY84], includes a marked union
construct in addition to tuple and finitary set. Abstract notions of relative information
capacity are developed there; for example, it can be shown that two complex value types
have equivalent information capacity iff they are isomorphic.

Exercises

Exercise 20.1 (V-relations) Consider the schema R of sort
(A, B:{{(C,D)}).

Furthermore, we impose the f{d A — B (more precisely, the generalization of a functional
dependency). (a) Prove that for each instance I of R, the size of I is bounded by a polynomial
in adom(I). (b) Show how the same information can be naturally represented using two flat
relations. (One suffices with some coding.) (c) Formalize the notion of V-relation of Section 20.1
and generalize the results of (a) and (b).

Exercise 20.2 Consider a (flat) relation R of sort
name age address car child_name child_age

and the multivalued dependency name age address —> car. Prove that the same information
can be stored in a complex value relation of sort

(name, age, address, cars : {dom}, children : {{child_name, child_age)})

Discuss the advantages of this alternative representation. (In particular, show that for the same
data, the size of the instance in the second representation is smaller. Also consider update
anomalies.)

Exercise 20.3 Consider the value

{(A:a,B:(A:{a,b},B:{(A:a)),C:()),
(Ata,B:{A:{}, B:(A:a)),C:{))}.

Show how to construct it in the core algebra from {a} and {b}.

Exercise 20.4 Prove that for each complex value relation I, there exists a constant query in
the core algebra returning /.
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Exercise 20.5 Let R be a database schema consisting of a relation R of sort
(A:dom, B:{(A:{dom}, B: (A :dom)), C:());

and let T = {(A : dom, B : {{dom}})}.

(a) Give a query computing for each I over R, adom(I).
(b) Give a query computing the set of values J of sort 7 such that adom(J) € adom(I).

Exercise 20.6  Prove that sef_create can be expressed using the other operations of the core
algebra. Hint: Use powerset.

Exercise 20.7 Formally define the following operations: (a) renaming, (b) singleton, (c)
cross-product, and (d) join. In each case, prove that the operation is expressible in ALG.
Which of these can be expressed without powerset?

Exercise 20.8 (Nest,unnest)

(a) Show that nest is expressible in ALG.
(b) Show that unnest is expressible in ALG” without using the powerset operator.

(c) Prove that unnest 4 is a right inverse of nests—(a,...a,) and that unnest 4 has no right
inverse.

Exercise 20.9 (Map) The operation map , is applicable to relations of sort ¢ where 7 is of
the form {(C : {t'}, ...)} and g is a query over relations of sort t’. For instance, let

I={C:1,C': J1),(C:1,C : ], (C:1L C :J)}.
Then
mape (1) ={(C : q(I1), C": J1), (C : q(1), C": 1), (C : q(I3), C": J3)}.

(a) Give an example of map and show how the query of this example can be expressed
in ALG.

(b) Give a formal definition of map and prove that the addition of map does not change
the expressive power of the algebra.

Exercise 20.10 Show how to express

{x [ {y [ liked(x, y)} = {y | saw(x, y)}}

in the core calculus.

Exercise 20.11 The calculus is extended by allowing terms of the form z U z’ and z — 7’ for
each set term z, 7’ of identical sort. Prove that this does not modify the expressive power of the
language. More generally, consider introducing in the calculus terms of the form g (¢, ..., ),
where ¢ is an n-ary algebraic operation and the #; are set terms of appropriate sort.

Exercise 20.12 Give five queries on the CINEMA database expressed in ALG". Give the
same queries in CALC®".
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Exercise 20.13 Complete the proof that ALG®” T CALC* for Theorem 20.5.1. Complete the
proof of “Last Stage” for Theorem 20.5.1.

Exercise 20.14 This exercise elaborates the simulation of CALC®” by ALG® presented in the
proof of Theorem 20.5.1. In particular, give the details of

(a) the construction of E

(b) the construction of G for each ©

(c) the last stage of the construction.

Exercise 20.15 Show that the query in Example 20.6.2 is strongly safe range (e.g., give a
query in ALG"~ or CALC®"~ equivalent to it).

Exercise 20.16 Show that every strongly safe-range query is in ALG®"~ [one direction of (b)
of Theorem 20.5.3].

Exercise 20.17 Sketch a program expressing the query even in CALC®+pu ™.
Exercise 20.18 Prove that CALC®+u+ =ALG®".

Exercise 20.19 Define a while language based on ALG. Show that it does not have more
power than ALG®".

Exercise 20.20 Consider a query g whose input consists of two relations blue, red of sort
(A, B) (i.e., consists of two graphs). Query ¢ returns a relation of sort (A, B : {dom}) with the
following meaning. A tuple (x, X) is in the result if x is a vertex and X is the set of vertexes y
such that there exists a path from x to y alternating blue and red edges. Prove in one line that g is
expressible in ALG”. Show how to express ¢ in some complex value language of this chapter.

Exercise 20.21 Generalize the construction of Example 20.6.2 to prove Theorem 20.6.1.

Exercise 20.22 Datalog with stratified negation was shown to be weaker than datalog with
inflationary negation. Is the situation similar for datalog® with negation?

Exercise 20.23 Exhibit a query that is not expressible in CALC®’~ but is expressible in
CALC*®, and one that is not expressible in CALC".

Exercise 20.24 Give a relational calculus formula or algebra expression for the query in
Example 20.4.8.

* Exercise 20.25 Recall the language whiley from Chapter 18. The language allows assign-
ments of relational algebra expressions to relational variables, looping, and integer arithmetic.
Let while§ be like whiley, except that the relational algebra expressions are in ALG. Prove
that while$; can express all queries from flat relations to flat relations.
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Minkisi are complex objects clearly not the product of a momentary im-
pulse. . . . To do justice to objects, a theory of them must be as complex as
them.!

—Wyatt MacGaffey in Astonishment and Power

Alice:  What is a Minkisi?
Sergio: It is an African word that translates somewhat like “things that do things.”
Vittorio: It is art, religion, and magic.
Riccardo:  Oh, this sounds to me very object oriented!

In this chapter, we provide a brief introduction to object-oriented databases (OODBs). A
complete coverage of this new and exciting area is beyond the scope of this volume; we
emphasize the new modeling features of OODBs and some of the preliminary theoretical
research about them. On the one hand, we shall see that some of the most basic issues con-
cerning OODBs, such as the design of query languages or the analysis of their expressive
power, can be largely resolved using techniques already developed in connection with the
relational and complex value models. On the other hand, the presence of new features (such
as object identifiers) and methods brings about new questions and techniques.

As mentioned previously, the simplicity of the data structure in the relational model
often hampers its use in many database applications. A relational representation can ob-
scure the intention and intricate semantics of a complex data structure (e.g., for holding the
design of a VLSI chip or an airplane wing). As we shall see, OODBs remedy this situation
by borrowing a variety of data structuring constructs from the complex value model (Chap-
ter 20) and from semantic data models (considered in Chapter 11). At a more fundamental
level, the relational data model and all of the data models presented so far impose a sharp
distinction between data storage and data processing: The DBMS provides data storage,
but data processing is provided by a host programming language with a relatively simple
language such as SQL embedded in it. OODBs permit the incorporation of behavioral por-
tions of the overall data management application directly into the database schema, using
methods in the sense of object-oriented programming languages.

This chapter begins with an informal presentation of the underlying constructs of
OODBs. Next a formal definition for a particular OODB model is presented. Two direc-
tions of theoretical research into OODBs are then discussed. First a family of languages

! Reprinted with permission. Smithsonian Institution Press ©1993.
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for data access is presented, with an emphasis on how the languages interact with the novel
modeling constructs (of particular interest is the impact of generalizing the notion of com-
plete query language to accommodate the presence of object identifiers, OIDs). Next two
languages for methods are described. The first is an imperative language allowing us to
specify methods with side effects.” The second language brings us to a functional perspec-
tive on methods and database languages and allows us to specify side-effect-free methods.
In both cases, we present some results on type safety and expressive power. Checking type
safety is generally undecidable; we identify a significant portion of the functional language,
monadic method schemas, for which type safety is decidable. With respect to expressive
power, the imperative language is complete in an extended sense formalized in this chapter.
The functional language expresses precisely QPTIME on ordered inputs and so turns out to
express the by-now-famous fixpoint queries. The chapter concludes with a brief survey of
additional research issues raised by OODBs.

21.1 Informal Presentation

Object-oriented database models stem from a synthesis of three worlds: the complex value
model, semantic database models, and object-oriented programming concepts. At the time
of writing, there is not widespread agreement on a specific OODB model, nor even on what
components are required to constitute an OODB model. In this section, we shall focus on
seven important ingredients of OODB models:

objects and object identifiers;

complex values and types;

classes;

methods;

ISA hierarchies;

inheritance and dynamic binding;

NSk D=

encapsulation.

In this section, we describe and illustrate these interrelated notions informally; a more
formal definition is presented in the following section. We will also briefly discuss alterna-
tives.

As a running example for this discussion, we shall use the OODB schema specified in
Fig. 21.1. This schema is closely related to the semantic data model schema of Fig. 11.1,
which in turn is closely related to the CINEMA example of Chapter 3.

As discussed in Chapter 11, a significant shortcoming of the relational model is that
it must use printable values, often called keys, to refer to entities or objects-in-the-world.
As a simple example, suppose that the first and last names of a person are used as a key
to identify that person. From a physical point of view, it is then cumbersome to refer to
a person, because the many bytes of his or her name must be used. A more fundamental

2 Methods are said to have side-effects if they cause updates to the database.
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(* schema and base definitions *)

create schema PariscopeSchema ;,
create base PariscopeBase;

(* class definitions *)

class Person
type tuple ( name: string, citizenship: string, gender: string );
class Director inherit Person
type tuple ( directs: set ( Movie ) );
class Actor inherit Person
type tuple ( acts_in: { Movie },
award: { tuple ( prize: string, year: integer ) } );
class Actor_Director inherit Director, Actor
class Movie
type tuple ( title: string, actors: set ( Actor );
director: Director ),
class Theater
type tuple ( name: string, address: string, phone: string );

(* name definitions *)

name Pariscope: set ( tuple ( theater: Theater, time: string, price: integer,
movie: Movie ) );

name Persons_I_like: set ( Person );

name Actors_I_like, Actors_you_like: set ( Actor );

name My_favorite_director : Director

(* method definitions *)

method get_name in class Person : string
{ if (gender = “male”)
return “Mr.” + self.name;
else
return “Ms.” + self.name }

method get_name in class Director : string
{ return ( “Director” + self.name ) };

method get_name in class Actor_Director : string
{ return ( “Director” + self.name ) };

(* we assume here that ‘+’ denotes a string concatenation operator *)

Figure 21.1: An OODB Schema
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problem arises if the person changes his or her name (e.g., as the result of marriage). When
performing this update, conceptually there is a break in the continuity in the representation
of the person. Furthermore, care must be taken to update all tuples (typically arising in a
number of different relations) that refer to this person, to reflect the change of name.

Following the spirit of semantic data models, OODB models permit the explicit rep-
resentation of physical and conceptual objects through the use of object identifiers (OIDs).
Conceptually, a unique OID is assigned to each object that is represented in the database,
and this association between OID and object remains fixed, even as attributes of the ob-
ject (such as name or age) change in value. The use of objects and OIDs permits OODBs
to share information gracefully; a given object o is easily shared by many other objects
simply by referencing the OID of o. This is especially important in the context of updates;
for example, the name of a person object o need be changed in only one place even if o is
shared by many parts of the database.

In an OODB, a complex value is associated with each object. This complex value may
involve printables and/or OIDs (i.e., references to the same or other objects). For example,
each object in the class Movie in Fig. 21.1 has an associated triple whose second coordinate
contains a set of OIDs corresponding to actors. In this section, we focus on complex values
constructed using the tuple and set construct. In practical OODB models, other constructs
are also supported (including, for example, bags and lists). Some commercial OODBs are
based on an extension of C++ that supports persistence; in these models essentially any
C++ structure can serve as the value associated with an object.

Objects that have complex values with the same type may be grouped into classes, as
happens in semantic data models. In the running example, these include Person, Director,
and Movie. Classes also serve as a natural focal point for associating some of the behavioral
(or procedural) components of a database application. This is accomplished by associating
with each class a family of methods for that class. Methods might be simple (e.g., produc-
ing the name of a person) or arbitrarily complex (e.g., displaying a representation of an
object to a graphical interface or performing a stress analysis of a proposed wing design).
A method has a name, a signature, and an implementation. The name and signature serve
as an external interface to the method. The implementation is typically written in a (pos-
sibly extended) programming language such as C or C++. The choice of implementation
language is largely irrelevant and is generally not considered to be part of the data model.

As with semantic models, OODB models permit the organization of classes into a
hierarchy based on what have been termed variously ISA, specialization, or class-subclass
relationships. The term hierarchy is used loosely here: In many cases any directed acyclic
graph (DAG) is permitted. In Fig. 21.1 the ISA hierarchy has Director and Actor as (im-
mediate) specializations of Person and Actor_Director as a specialization of both Director
and Actor. Following the tradition of object-oriented programming languages, a virtual
class any is included that serves as the unique root of the ISA hierarchy.

In OODB models, there are two important implications of the statement that class ¢’
is a subclass of c. First it is required that the complex value type associated with ¢’ be a
subtype (in the sense formally defined later) of the complex value type associated with c.
Second it is required that if there is a method with name m associated with ¢, then there is
also a method with name m associated with ¢’. In some cases, the implementation (i.e., the
actual code) of m for ¢’ is identical to that for c; in this case the code of m for ¢’ need not
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be explicitly specified because it is inherited from c. In other cases, the implementation
of m for ¢’ is different from that for ¢; in which case we say that the implementation of
m for ¢’ overrides the implementation of m for c. (See the different implementations for
method get_name in Fig. 21.1.) The determination of what implementation is associated
with a given method name and class is called method resolution. A method is invoked with
respect to an object o, and the class to which o belongs determines which implementation
is to be used. This policy is called dynamic binding. As we shall see, the interaction of
method calls and dynamic binding in general makes type checking for OODB schemas
undecidable. (It is undecidable to check whether such a schema would lead to a runtime
type error; on the other hand, it is clearly possible to find decidable sufficient conditions
that will guarantee that no such error can arise.)

In the particular OODB model presented here, both values (in the style of complex
values) and objects are supported. For example, in Fig. 21.1 a persistent set of triples
called Pariscope is supported (see also Fig. 11.1). The introduction of values not directly
associated with OIDs is a departure from the tradition of object-oriented programming, and
not all OODBs in the literature support it. However, in databases the use of explicit values
often simplifies the design and use of a schema. Their presence also facilitates expressing
queries in a declarative manner.

The important principle of encapsulation in object orientation stems from the field
of abstract data types. Encapsulation is used to provide a sharp boundary between how
information about objects is accessed by database users and how that information is actu-
ally stored and provided. The principle of encapsulation is most easily understood if we
distinguish two categories of database use: dba mode, which refers to activities unique to
database administrators (including primarily creating and modifying the database schema),
and user mode, which refers to activities such as querying and updating the actual data in
the database. Of course, some users may operate in both of these modes on different occa-
sions. In general, application software is viewed as invoked from the user mode.

Encapsulation requires that when in user mode, a user can access or modify infor-
mation about a given object only by means of the methods defined for that object; he or
she cannot directly examine or modify the complex value or the methods associated with
the object. In particular, then, essentially all application software can access objects only
through their methods. This has two important implications. First, as long as the same set
of methods is supported, the underlying implementation of object methods, and even of the
complex value representation of objects, can be changed without having to modify any ap-
plication software. Second, the methods of an object often provide a focused and abstracted
interface to the object, thus making it simpler for programmers to work with the objects.

In object-oriented programming languages, it is typical to enforce encapsulation ex-
cept in the special case of rewriting method implementations. In some OODB models, there
is an important exception to this in connection with query languages. In particular, it is
generally convenient to permit a query language to examine explicitly the complex values
associated with objects.

The reader with no previous exposure to object-oriented languages may now be utterly
overwhelmed by the terminology. It might be helpful at this point to scan through a book
or manual about an object-oriented programming language such as C++, or an OODB such
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as O, or ObjectStore. This will provide numerous examples and the overall methodology
of object-oriented programming, which is beyond the scope of this book.

21.2 Formal Definition of an OODB Model

This section presents a formal definition of a particular OODB model, called the generic
OODB model. (This model is strongly influenced by the IQL and O, models. Many fea-
tures are shared by most other OODB models. While presenting the model, we also discuss
different choices made in other models.) The presentation essentially follows the preced-
ing informal one, beginning with definitions for the types and class hierarchy and then
introducing methods. It concludes with definitions of OODB schema and instance.

Types and Class Hierarchy

The formal definitions of object, type, and class hierarchy are intertwined. An object
consists of a pair (identifier, value). The identifiers are taken from a specific sort containing
OIDs. The values are essentially standard complex values, except that OIDs may occur
within them. Although some of the definitions on complex values and types are almost
identical to those in Chapter 20, we include them here to make precise the differences from
the object-oriented context. As we shall see, the class hierarchy obeys a natural restriction
based on subtyping.

To start, we assume a number of atomic types and their pairwise disjoint corresponding
domains: integer, string, bool, float. The set dom of atomic values is the (disjoint) union
of these domains; as before, the elements of dom are called constants. We also assume an
infinite set obj = {01, 02, ...} of object identifiers (OIDs), a set class of class names, and a
set att of attribute names. A special constant nil represents the undefined (i.e., null) value.

Given a set O of OIDs, the family of values over O is defined so that

(a) nil, each element of dom, and each element of O are values over O; and
(b) if vy, ..., v, are values over O, and Ay, ..., A, distinct attributes names, the
tuple [Ay : vy, ..., Ayt v,] and the set {vy, ..., v,} are values over O.

The set of all values over O is denoted val(O). An object is a pair (o, v), where o is an
OID and v a value.

In general, object-oriented database models also include constructors other than tuple
and set, such as list and bag; we do not consider them here.

ExAMPLE 21.2.1 Letting 0id7, 0id22, etc. denote OIDs, some examples of values are as
follows:

[theater : 0id7, time : “16:45”, price : 45, movie : 0id22]

{“H. Andersson”, “K. Sylwan”, “I. Thulin”, “L. Ullman”}

[title : “The Trouble with Harry”, director : 0id77,

actors : {0id81, 0id198, 0id265, 0id77}]
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An example of an object is

(0id22 , [title :“The Trouble with Harry”, director : 0id77,
actors : {0id81, 0id198, 0id265, 0id77}])

As discussed earlier, objects are grouped in classes. All objects in a class have complex
values of the same type. The type corresponding to each class is specified by the OODB
schema.

Types are defined with respect to a given set C of class names. The family of types
over C is defined so that

1. integer, string, bool, float, are types;

2. the class names in C are types;

3. if 7 is a type, then? {} is a (set) type;

4. if 1, ..., 7, are types and Ay, ..., A, distinct attribute names,
then [Ay:1y,..., A, : T,] is a (tuple) type.

The set of types over C together with the special class name any are denoted types(C).
(The special name any is a type but may not occur inside another type.) Observe the close
resemblance with types used in the complex value model.

ExAMPLE 21.2.2 An example of a type over the classes of the schema in Fig. 21.1 is
[name : string, citizenship : string, gender : string]

One may want to give a name to this type (e.g., Person_type). Other examples of types
(with names associated to them) include

Director_type = [name : string, citizenship : string, gender : string,
directs : {Movie}]

Theater_type = [name : string, address : string, phone : string]
Pariscope_type = [theater : Theater, time : string, price : integer, movie : Movie]
Movie_type = [title : string, actors: {Actor}, director : Director]

Award_type = [prize : string, year :integer]

In an OODB schema we associate with each class ¢ a type o (c), which dictates the
type of objects in this class. In particular, for each object (o, v) in class ¢, v must have the
exact structure described by o (c).

3In Fig. 21.1 we use keywords set and tuple as syntactic sugar when specifying the set and tuple
constructors.
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Recall from the informal description that an OODB schema includes an ISA hierarchy
among the classes of the schema. The class hierarchy has three components: (1) a set
of classes, (2) the types associated with these classes, and (3) a specification of the ISA
relationships between the classes. Formally, a class hierarchy is a triple (C, o, <), where
C is a finite set of class names, o a mapping from C to types(C), and < a partial order
onC.

Informally, in a class hierarchy the type associated with a subclass should be a refine-
ment of the type associated with its superclass. For example, a class Student is expected to
refine the information on its superclass Person by providing additional attributes. To cap-
ture this notion, we use a subtyping relationship (<) that specifies when one type refines
another.

DEFINITION 21.2.3 Let (C, 0, <) be a class hierarchy. The subtyping relationship on
types(C) is the smallest partial order < over types(C) satisfying the following conditions:

(a) ifc </, thenc < ¢;

(b) if 7; < 7/ foreach i € [1,n] and n < m, then

[Ay it ATy A Tl S TAL T, L AT
(c) if Tt <7/, then {t} < {7'}; and

(d) for each 7, T < any (i.e., any is the top of the hierarchy).

A class hierarchy (C, o, <) is well formed if for each pair ¢, ¢’ of classes, ¢ < ¢’ implies
o(c) <o(c).

By way of illustration, it is easily verified that
Director_type < Person_type Director_type £ Movie_type.

Thus the schema obtained by adding the constraint Director < Movie would not be well
formed.
Henceforth we consider only well-formed class hierarchies.

ExampLE 21.2.4 Consider the class hierarchy (C, o, <) of the schema of Fig. 21.1. The
set of classes is

C = {Person, Director, Actor, Actor_Director, Theater, Movie}

with Actor < Person, Director < Person, Actor_Director < Director, Actor_Director <
Actor, and (referring to Example 21.2.2 for the definitions of Person_type, Theater_type,
etc.)
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o (Person) = Person_type,

o (Theater) = Theater_type,

o (Movie) = Movie_type,

o (Director) = Director_type,

o (Actor) = [name : string, citizenship : string,

gender : string, acts_in : {Movie},
award : {Award_type}]

o (Actor_Director) = [name : string, citizenship : string,
gender : string, acts_in : {Movie},

award : {Award_type}, directs : {Movie}]

The use of type names here is purely syntactic. We would obtain the same schema if we
replaced, for instance, Person_type with the value of this type.
Observe that o (Director) < o (Person) and o (Actor) < o (Person), etc.

The Structural Semantics of a Class Hierarchy

We now describe how values can be associated with the classes and types of a class
hierarchy. Because the values in an OODB instance may include OIDs, the semantics of
classes and types must be defined simultaneously. The basis for these definitions is the
notion of OID assignment, which assigns a set of OIDs to each class.

DEFINITION 21.2.5 Let (C, o, <) be a (well-formed) class hierarchy. An OID assignment
is a function = mapping each name in C to a disjoint finite set of OIDs. Given OID
assignment 7, the disjoint extension of ¢ is m(c), and the extension of ¢, denoted 7*(c),
isU{m(c) | eC,c <cl.

If 7 is an OID assignment, then 7*(¢’) € 7*(c) whenever ¢’ < ¢. This should be
understood as a formalization of the fact that an object of a subclass ¢’ may be viewed
also as an object of a superclass ¢ of ¢’. From the perspective of typing, this suggests that
operations that are type correct for members of ¢ are also type correct for members of ¢’.

Unlike the case for many semantic data models, the definition of OID assignment for
OODB schemas implies that extensions of classes of an ISA hierarchy without common
subclasses are necessarily disjoint. In particular, extensions of all leaf classes of the hierar-
chy are disjoint (see Exercise 21.2). This is a simplifying assumption that makes it easier to
associate objects to classes. There is a unique class to whose disjoint extension each object
belongs.

The semantics for types is now defined relative to a class hierarchy (C, o, <) and
an OID assignment 7. Let O = U{r(c) | ¢ € C}, and define 7w (any) = O. The disjoint
interpretation of a type t, denoted dom(t), is given by

(a) for each atomic type t, dom(7) is the usual interpretation of that type;
(b) dom(any) is val(O);
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(¢) foreach c € C, dom(c) = n*(c) U {nil};
(d) dom({t}) ={{v1,...,vs} |n >0, and v; € dom(t),i € [1,n]}; and
(e) dom([Ay:t1,..., A i) ={[A1:v1, ..., Ar:vi] | v; edom(t;), i €[1,k]}.

REMARK 21.2.6 In the preceding interpretation, the type determines precisely the struc-
ture of a value of that type. It is interesting to replace (e) by

dom([A1 CTly ey Ak . ‘L'k]) =
(e/) {[A1:v1, ..., Ak Uk, Akgl : Vi1, --- A ] |
vi € dom(z;). i € [1,k],v; € val(0), j € [k + 1, 1]}.

Under this alternative interpretation, for each 7, t’ in types(C), if T/ < t then dom(t’) C
dom(t). This is why this is sometimes called the domain-inclusion semantics. From a
data model viewpoint, this presents the disadvantage that in a correctly typed database
instance, a tuple may have a field that is not even mentioned in the database schema. For
this reason, we do not adopt the domain-inclusion semantics here. On the other hand, from
a linguistic viewpoint it may be useful to adopt this more liberal semantics in languages to
allow variables denoting tuples with more attributes than necessary. M

Adding Behavior

The final ingredient of the generic OODB model is methods. A method has three compo-
nents:

(a) aname
(b) asignature
(c) an implementation (or body).

There is no problem in specifying the names and signatures of methods in an OODB
schema. To specify the implementation of methods, a language for methods is needed.
We do not consider specific languages in the generic OODB model. Therefore only names
and signatures of methods are specified at the schema level in this model. In Section 21.4,
we shall consider several languages for methods and shall therefore be able to add the
implementation of methods to the schema.

Without specifying the implementation of methods, the generic OODB model speci-
fies their semantics (i.e., the effect of each method in the context of a given instance). This
effect, which is a function over the domains of the types corresponding to the signature of
the method, is therefore specified at the instance level.

We assume the existence of an infinite set meth of method names. Let (C, o, <) be
a class hierarchy. For method name m, a signature of m is an expression of the form
m:c X T X -+ X T,—1 = T, Where c is a class name in C and each t; is a type over
C. This signature is associated with the class c; we say that method m applies to objects of
class ¢ and to objects of classes that inherit m from c. It is common for the same method
name to have different signatures in connection with different classes. (Some restrictions
shall be specified later.) The notion of signature here generalizes the one typically found in
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object-oriented programming languages, because we permit the t;’s to be types rather than
only classes.

It is easiest to describe the notions of overloading, method inheritance, and dynamic
binding in terms of an example. Consider the methods defined in the schema of Fig. 21.1.
All three share the name ger_name. The signatures are given by

get_name : Person — string
get_name : Director — string

get_name : Actor_Director — string

Note that ger_name has different implementations for these classes; this is an example of
overloading of a method name.

Recall that Actor is a subclass of Person. According to the informal discussion, if
get_name applies to elements of Person, then it should also apply to members of Actor.
Indeed, in the object-oriented paradigm, if a method m is defined for a class ¢ but not for
a subclass ¢’ of ¢ (and it is not defined anywhere else along a path from ¢’ to ¢), then the
definition of m for ¢’ is inherited from c. In particular, the signature of m on ¢’ is identical
to the one of m for ¢, except that the first ¢ is replaced by ¢’. The implementation of m
for ¢’ is identical to that for c. In the schema of Fig. 21.1, the signature of get_name for
Actor is

get_name : Actor — string

and the implementation is identical to the one for Person. The determination of the correct
method implementation to use for a given method name m and class c is called method
resolution; the selected implementation is called the resolution of m for c.

Suppose that v is an OID assignment, that 0id25 is in the extension 7 *(Person) of
Person, and that get_name is called on 0id25. What implementation of get_name will
be used? In our OODB model we shall use dynamic binding (also called late binding,
or value-dependent binding). This means that the specific implementation chosen for
get_name on 0id25 depends on the most specific class that 0id25 belongs to, that is, the
class ¢ such that 0id25 € 7 (c).

(An alternative to dynamic binding is static binding, or context-dependent binding.
Under this discipline, the implementation used for get_name depends on the type associ-
ated with the variable holding 0id25 at the point in program where get_name is invoked.
This can be determined at compile time, and so static binding is generally much cheaper
than dynamic binding. In the language C++, the default is static binding, but dynamic bind-
ing can be obtained by using the keyword virtual when specifying the method.)

Consider a call m(o, vy, ..., v,—1) to method m. This is often termed a message,
and o is termed the receiver. As described here, the implementation of m associated
with this message depends exclusively on the class of o. To emphasize the importance
of the receiver for finding the actual implementation, in some languages the message is
denoted 0 — m[vy, ... v,—1]. In some object-oriented programming languages, such as
CommonLoops (an object-oriented extension of LISP), the implementation depends on
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Figure 21.2: Unambiguous definition

all of the parameters of the call, not just the first. This is also the approach of the method
schemas introduced in Section 21.4.

The set of methods applicable to an object is called the interface of the object. As noted
in the informal description of OODB models, in most cases objects are accessed only via
their interface; this philosophy is called encapsulation.

As part of an OODB schema, a set M of method signatures is associated to a class
hierarchy (C, o, <). Note that a signature m : ¢ X 7| X -+ X T,_] — T, can be viewed
as giving a particular meaning to m for class c, at least at a syntactic level. Because of
inheritance, a meaning for method m need not be given explicitly for each class of C nor
even for subclasses of a class for which m has been given a meaning. However, we make
two restrictions on the family of method signatures: The set M is well formed if it obeys
the following two rules:

Unambiguity: If c is a subclass of ¢’ and ¢” and there is a definition of m for ¢’ and ¢”, then
there is a definition of m for a subclass of ¢’ and ¢” that is either c itself, or a superclass
of c. (See Fig. 21.2.)

Covariance*: lfm:cx 1y x - Xty —tandm:c x t/ x --- x 1., — 1t/ are two defi-
n 1 m
nitions and ¢ < ¢/, then n = m foreach i, ; < t/and v < 7'.

The first rule prevents ambiguity resulting from the presence of two method implemen-
tations both applicable for the same object. A primary motivation for the second rule is
intuitive: We expect the argument and result types of a method on a subclass to be more
refined than those of the method on a superclass. This also simplifies the writing of type-
correct programs, although type checking leads to difficulties even in the presence of the
covariance assumption (see Section 21.4).

Database Schemas and Instances

We conclude this section by presenting the definitions of schemas and instances in the
generic OODB model. An important subtlety here will be the role of OIDs in instances

41In type theory, contravariance is used instead. Contravariance is the proper notion when functions
are passed as arguments, which is not the case here.
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as placeholders; as will be seen, the specific OIDs present in an instance are essentially
irrelevant.

As indicated earlier, a schema describes the structure of the data that is stored in
a database, including the types associated with classes and the ISA hierarchy and the
signature of methods (i.e., the interfaces provided for objects in each class).

In many practical OODBEs, it has been found convenient to allow storage of complex
values that are not associated with any objects and that can be accessed directly using
some name. This also allows us to subsume gracefully the capabilities of value-based
models, such as relations and complex values. It also facilitates writing queries. To reflect
this feature, we allow a similar mechanism in schemas and instances. Thus schemas may
include a set of value names with associated types. Instances assign values of appropriate
type to the names. Method implementations, external programming languages, and query
languages may all use these names (to refer to their current values) or a class name (to
refer to the set of objects currently residing in that class). In this manner, named values and
class names are analogous to relation names in the relational model and to complex value
relation names in the complex value model.

In the schema of Fig. 21.1, examples of named values are Pariscope (holding a set
of triples); Persons_I_like, Actors_I_like, and Actors_you_like (referring to sets of person
objects and actor objects; and, finally, My_favorite_director (referring to an individual
object as opposed to a set). These names can be used explicitly in method implementations
and in external query and programming languages.

We now have the following:

DEFINITION 21.2.7 A schema is a 5-tuple S = (C, 0, <, M, G) where

e G is a set of names disjoint from C;
* ¢ is a mapping from C U G to types(C);
e (C, o, <) is a well-formed class hierarchys; and

* M is a well-formed set of method signatures for (C, o, <).

An instance of an OODB schema populates the classes with OIDs, assigns values to
these OIDs, gives meaning to the other persistent names, and assigns semantics to method
signatures. The semantics of method signatures are mappings describing their effect. From
a practical viewpoint, the population of the classes, the values of objects, and the values of
names are kept extensionally; whereas the semantics of the methods are specified by pieces
of code (intensionally). However, we ignore the code of methods for the time being.

DEFINITION 21.2.8 An instance of schema (C, 0, <, M, G) isa4-tuple I = (, v, y, u),
where
(a) 7 is an OID assignment (and let O = U{r(¢) | c € C});

(b) v maps each OID in O to a value in val(O) of correct type [i.e., for each ¢ and
o€ m(c), v(o) € dom(o(c))];

3> By abuse of notation, we use here and later o instead of o .
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(c) y associates to each name in G of type t a value in dom(t);

(d) w assigns semantics to method names in agreement with the method signatures
in M. More specifically, for each signature m : ¢ x @ — 1,

wim:cxa— 1):dom(c x &) — dom(t);
that is, u(m : ¢ x @ — t) is a partial function from dom(c x @) to dom(t).

Recall that a method m can occur with different signatures in the same schema. The
mapping p can assign different semantics to each signature of m. The function p(m :
¢ x @ — t) is only relevant on objects associated with ¢ and subclasses of ¢ for which
m is not redefined.

In the preceding definitions, the assignment of semantics to method signatures is
included in the instance. As will be seen in Section 21.4, if method implementations
are included in the schema, they induce the semantics of methods at the instance level
(this is determined by the semantics of the particular programming language used in the
implementation).

Intuitively, it is generally assumed that elements of the atomic domains have univer-
sally understood meaning. In contrast, the actual OIDs used in an instance are not relevant.
They serve essentially as placeholders; it is only their relationship with other OIDs and
constants that matters. This arises in the practical perspective in two ways. First, in most
practical systems, OIDs cannot be explicitly created, examined, or manipulated. Second,
in some object-oriented systems, the actual OIDs used in a physical instance may change
over the course of time (e.g., as a result of garbage collection or reclustering of objects).

To capture this aspect of OIDs in the formal model, we introduce the notion of OID
isomorphism. Two instances I, J are OID isomorphic, denoted I =¢p;p J, if there exists a
bijection on dom U obj that maps obj to obj, is the identity on dom, and transforms I'into J.
To be precise, the term object-oriented instance should refer to an equivalence class under
OID isomorphism of instances as defined earlier. However, it is usually more convenient to
work with representatives of these equivalence classes, so we follow that convention here.

REMARK 21.2.9 In the model just described, a class encompasses two aspects:

1. at the schema level, the class definition (its type and method signatures); and

2. at the instance level, the class extension (the set of objects currently in the class).

It has been argued that one should not associate explicit class extensions with classes. To
see the disadvantage of class extensions, consider object deletion. To be removed from
the database, an object has to be deleted explicitly from its class extension. This is not
convenient in some cases. For instance, suppose that the database contains a class Polygon
and polygons are used only in figures. When a polygon is no longer used in any figure of
the current database, it is no longer of interest and should be deleted. We would like this
deletion to be implicit. (Otherwise the user of the database would have to search all possible
places in which a reference to a polygon may occur to be able to delete a polygon.)
To capture this, some OODBs use an integrity constraint, which states that
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every object should be accessible from some named value.

This integrity constraint is enforced by an automatic deletion of all objects that become
unreachable from the named values. In the polygon example, this approach would allow
defining the class Polygon, thus specifying the structure and methods proper to polygons.
However, the members of class Polygon would only be those polygons that are currently
relevant. Relevance is determined by membership in (or accessibility from) the named
values (e.g., My-Figures, Your-Figures) that refer to polygons. From a technical viewpoint,
this involves techniques such as garbage collection.

In these OODBs, the set of objects in a class is not directly accessible. For this
reason, the corresponding models are sometimes called models without class extension.
Of course, it is always possible, given a schema, to compute the class extensions or to
adapt object creation in a given class to maintain explicitly a named value containing that
class extension. In these OODBSs, the named values are also said to be roots of persistence,
because the persistence of an object is dependent on its accessibility from these named
values. M

21.3 Languages for OODB Queries

This section briefly introduces several languages for querying OODBs. These queries
are formulated against the database as a whole; unlike methods, they are not associated
with specific classes. In the next section, we will consider languages intended to provide
implementations for methods.

In describing the OODB query languages, we emphasize how OODB features are
incorporated into them. The first language is an extension of the calculus for complex
values, which incorporates such object-oriented components as OIDs, different notions
of equality, and method calls. The second is an extension of the while language, initially
introduced in Chapter 14. Of primary interest here is the introduction of techniques for
creating new OIDs as part of a query. At this point we examine the notion of completeness
for OODB access languages. We also briefly look at a language introducing a logic-based
approach to object creation. Finally, we mention a practical language, O,SQL. This is a
variant of SQL for OODBs that provides elegant object-oriented features.

Although the languages discussed in this section do provide the ability to call methods
and incorporate the results into the query processing and answer, we focus primarily
on access to the extensional structural portion of the OODB. The intensional portion,
provided by the methods, is considered in the following section. Also, we largely ignore the
important issue of typing for queries and programs written in these languages. The issue of
typing is considered, in the context of languages for methods, in the next section.

An Object-Oriented Calculus

The object-oriented calculus presented here is a straightforward generalization of the com-
plex value calculus of Chapter 20, extended to incorporate objects, different notions of
equality, and methods.
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Let (C, 0, <, M, G) be an OODB schema, and let us ignore the object-oriented fea-
tures for a moment. Each name in G can be viewed as a complex value; it is straightforward
to generalize the complex value calculus to operate on the values referred to by G. (The
fact that in the complex value model all relations are sets whereas some names in G might
refer to nonset values requires only a minor modification of the language.)

Let us now consider objects. OIDs may be viewed as elements of a specific sort.
If viewed in isolation from their associated values, this suggests that the only primitive
available for comparing OIDs is equality. Recall from the schema of Fig. 21.1 the names
Actors_I_like and Actors_you_like. The query6

21.1)  3x, y(x € Actors_I_like N y € Actors_you_like A x = y)

asks whether there is an actor we both like. To obtain the names of such actors, we need
to introduce dereferencing, a mechanism to obtain the value of an object. Dereferencing is
denoted by 1. The following query yields the names of actors we both like:

21.2) {y|3x(x € Actors_I_like A x € Actors_you_like A x 1 .name = y)}

In the previous query, x 1 denotes the value of x, in this case, a tuple with four fields. The
dot notation (.) is used as before to obtain the value of specific fields.

In query (21.1), we tested two objects for equality, essentially testing whether they
had the same OID. Although it does not increase the expressive power of the language, it
is customary to introduce an alternative test for equality, called value equality. This tests
whether the values of two objects are equal regardless of whether their OIDs are distinct.
To illustrate, consider the three objects having Actor_type:

(0id50, [name : “Martin”, citizenship : “French”, gender : “male”,
award : { }, acts_in : {0id33}])

(0id51, [name : “Martin”, citizenship : “French”, gender : “male”,
award : { }, acts_in : {0id33}])

(0id52, [name : “Martin”, citizenship : “French”, gender : “male”,
award : { }, acts_in : {0id34}])

Then 0id50 and 0id51 are value equal, whereas 0id50 and 0id52 are not. Yet another
form of equality is deep equality. If 0id33 and oid34 are value equal, then 0id50 and
0id5?2 are deep equal. Intuitively, two objects are deep equal if the (possibly infinite) trees
obtained by recursively replacing each object by its value are equal. The infinite trees that
we obtain are called the expansions. They present some regularity; they are regular trees
(see Exercise 21.10).

The notion of deep equality highlights a major difference between value-based and
object-based models. In a value-based model (such as the relational or complex value

6 In this example, if name is a key for Actor, then one can easily obtain an equivalent query not using
object equality; this may not be possible if there is no key for Actor.
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models), the database can be thought of as a collection of (finite) trees. The connections
between trees arise as a result of the contents of atomic fields. That is, they are implicit
(e.g., the same string may appear twice). In the object-oriented world, a database instance
can be thought of as graph. Paths in the database are more explicit. That is, one may
view an (oid, value) pair as a form of logical pointer and a path as a sequence of pointer
dereferencing.

This graph-based perspective leads naturally to a navigational form of data access
(e.g., using a sequence such as o 1 .director 1 .citizenship to find the citizenship of the
director of a given movie object o). This has led some to view object-oriented models as
less declarative than value-based models such as the relational model. This is inaccurate,
because declarativeness is more a property of access languages than models. Indeed, the
calculus for OODBs described here illustrates that a highly declarative language can be
developed for the OODB model.

We conclude the discussion of the object-oriented calculus by incorporating meth-
ods. For this discussion, it is irrelevant how the methods are specified or evaluated; this
evaluation is external to the query. The query simply uses the method invocations as or-
acles. Method resolution uses dynamic binding. The value of an expression of the form
m(ty, ..., t,) under a given variable assignment v is obtained by evaluating (externally)
the implementation of m for the class of v(¢{) on input v(¢(, ..., 1t,). In this context, it
is assumed that m has no side-effects. Although not defined formally here, the following
illustrates the incorporation of methods into the calculus:

21.3) {y|3Ix(x € Persons_I_like N\ y = get_name(x))}
If the set Persons_I_like contains Bergman and Liv Ullman, the answer would be
{*Ms. Ullman”, “Liv Ullman™}

The use of method names within the calculus raises a number of interesting typing and
safety issues that will not be addressed here.

Object Creation and Completeness

Relational queries take relational instances as input and produce relational instances as
output. The preceding calculus fails to provide the analogous capability because the output
of a calculus query is a set of values or objects. Two features are needed for a query
language to produce the full-fledged structural portion of an object-oriented instance: the
ability to create OIDs, and the ability to populate a family of named values (rather than
producing a single set).

We first introduce an extension of the while language of Chapter 14 that incorporates
both of these capabilities. This language leads naturally to a discussion of completeness of
OODB access languages. After this we mention a second approach to object creation that
stems from the perspective of logic programming.

The extension of while introduced here is denoted while,p;. It will create new OIDs in
a manner reminiscent of how the language while,,, of Chapter 18 invented new constants.
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The language while,p; incorporates object-oriented features such as dereferencing
and method calls, as in the calculus. To illustrate, we present a while,,; program that
collects all actors reachable from an actor I like—Liv Ullman. In this query, v_movies and
v_directors serve as variables, and reachable serves as a new name that will hold the output.

reachable := {x | x € Actors_I_like N\ x 1 .name = “Liv Ullman™};
v_movies := { }; v_directors :=={ };
while change do
begin
reachable := reachable U {x | Ay(y € v_movies A x € y 1 .actors)};
v_directors := v_directors
U {x | Iy(y € v_movies A x € y 1 .director)};
v_movies := v_movies
U{x | Ay(y € reachable A x € y 1 .acts_in)}
U{x | y(y € v_directors A x € y 1 .directs)};
end,

We now introduce object creation. The operator new works as follows. It takes as input
a set of values (or objects) and produces one new OID for each value in the set. As a simple
example, suppose that we want to objectify the quadruples in the named value Pariscope
of the schema of Fig. 21.1. This may be accomplished with the commands

add_class Pariscope_obj
type tuple (theater : Theater, time : string, price : integer, movie : Movie);
Pariscope_obj := new(Pariscope)

Of course, the new operator can be used in conjunction with arbitrary expressions that yield
a set of values, not just a named value.

The new operator used here is closely related to the new operator of the language
whiley e, of Chapter 18. Given that while,,; has iteration and the ability to create new
OIDs, it is natural to ask about the expressive power of this language. To set the stage,
we introduce the following analogue of the notion of (computable) query, which mimics
the one of Chapter 18. The definition focuses on the structural portion of the OODB model;
methods are excluded from consideration.

DEFINITION 21.3.1 Let R and S be two OODB schemas with no method signatures. A
determinate query is a relation Q from inst(R) to inst(S) such that
(a) Q is computable;
(b) (Genericity) if (I,J) € O and p is a one-to-one mapping on constants, then
(oM, pI)) € O
(¢) (Functionality) if (I, J) € Q, and (I, J') € Q, then J and J' are OID isomorphic;
and
(d) (Well defined) if (I, J) € Q and (I, J') is OID isomorphic to (I, J), then (I', J') €
0.
A language is determinate complete (for OODBs) if it expresses exactly the determinate
queries.
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The essential difference between the preceding definition and the definition of deter-
minate query in Chapter 18 is that here only OIDs can be created, not constants. Parts (c)
and (d) of the definition ensure that a determinate query Q can be viewed as a function
from OID equivalence classes of instances over R to OID equivalence classes of instances
over S. So OIDs serve two purposes here: (1) They are used to compute in the same way
that invented values were used to break the polynomial space barrier; and (2) they are now
essential components of the data structure and in particular of the result. With respect to
(2), an important aspect is that we are not concerned with the actual value of the OIDs,
which motivates the use of the equivalence relation. (Two results are viewed as identical if
they are the same up to the renaming of the OIDs.)

Like whilepey,, while,p; is not determinate complete. There is an elegant characteriza-
tion of the determinate queries expressible in while,p;. This result, which we state next,
uses a local characterization of input-output pairs of while,,; programs. That characteriza-
tion is in the spirit of the notion of BP-completeness, relating input-output pairs of relational
calculus queries (see Exercise 16.11). For each input-output pair (1, J), the characteriza-
tion of while,p; queries requires a simple connection between the automorphism group of
I and that of J. For an instance K, let Aut(K) denote the set of automorphisms of K. For
a pair of instances K, K', Aut({K, K')) denotes the bijections on adom(K U K’) that are
automorphisms of both K and K'.

THEOREM 21.3.2 A determinate query g is expressible in while,; iff for each input-
output pair (I, J) in g there exists a mapping k from Aut(I) to Aut((I, J)) such that for
each 7, u € Aut(l),

(i) 7 and A(t) coincide on I;
(i) A(tr o) =h(t) o h(w); and
(iii) A(idy) =id;, ).

The “only if” part of the theorem is proven by an extension of the trace technique
developed in the proof of Theorem 18.2.5 (Exercise 21.14). The “if” part is considerably
more complex and is based on a group-theoretic argument.

A mapping & just shown is called an extension homomorphism from Aut(I) to
Aut({1, J)). To see an example of the usefulness of this characterization, consider the
query g in Fig. 21.3. Recall that ¢ was shown as not expressible in the language while,,,,
by Theorem 18.2.5. The language while,; is more powerful than while,,,, so in principle
it may be able to express that query. However, we show that this is not the case, so whilep;
is not determinate complete.

ProrosiTION 21.3.3  Query g (of Fig. 21.3) is not expressible in while,y;.

Proof Let (I, J) be the input-output pair of Fig. 21.3. The proof is by contradiction.
Suppose there is a while,p; query that produces J on input /. By Theorem 21.3.2, there
is an extension homomorphism 4 from Aut (1) to Aut({I, J)). Let u be the automorphism
of I exchanging a and b. Note that = ! = 1, so i o s = id;. Consider h () (). Clearly,
h(w)(Yo) € {1, ¥3}. Suppose h() (o) = Y1 (the other case is similar). Then clearly,
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V3

{(1, b} = WO b \VZ a

41

Figure 21.3: A query not expressible in while

h(w) (1) = ¥rp. Consider now h(u o w)(¥o). We have, on one hand,

h(w o ) (o) = (h() o h(w)) (o)
= h(uw) (Y1)
=1n

and on the other hand

h(p o ) (o) = h(id;) (o)
=id; 1 (Yo)
= o,

which is a contradiction because ¥ # 2. So g is not expressible in while,,;. M

It is possible to obtain a language expressing all determinate queries by adding to
while,p; a choose operator that allows the selection (nondeterministically but in a determi-
nate manner) of one object out of a set of objects that are isomorphic (see Exercise 18.14).
However, this is a highly complex construct because it requires the ability to check for
isomorphism of graphs. The search for simpler, local constructs that yield a determinate-
complete language is an active area of research.

A Logic-Based Approach to Object Creation

We now briefly introduce an alternative approach for creating OIDs that stems from the
perspective of datalog and logic programming. Suppose that a new OID is to be created for
each pair (z, m), where movie m is playing at theater ¢ according to the current value of
Pariscope. Consider the following dataloglike rule:

1. create_tm_object(x, t, m) < Pariscope(t, s, m)

Note that x occurs in the rule head but not in the body, so the rule is not safe. Intuitively,
we would like to attach semantics to this rule so that a new OID is associated to x for each
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distinct pair of (¢, m) values. Using the symbol 3! to mean “exists a unique,” the following
versions of (1) intuitively captures the semantics.

2. VtVm3!xVs[create_tm_object(x, t, m) < Pariscope(t, s, m)]

3. VtVm3!x[create_tm_object(x, t, m) <— Is(Pariscope(t, s, m))]

This suggests that Skolem functions might be used. Specifically, let f;,, be a function
symbol associated with the predicate create_tm_object. We rewrite (2) as

VtVmVs|[create_tm_object( fim(t, m), t, m) <— Pariscope(t, s, m)]

or, leaving off the universal quantifiers as traditional in datalog,
4. create_tm_object( fim(t, m), t, m) < Pariscope(t, s, m)

Under this approach, the Skolem terms resulting from rule (4) are to be interpreted
as new, distinct OIDs. Under some formulations of the approach, syntactic objects such
as fim(0id7, 0id22) (where 0id7 is the OID of some theater and 0id22 the OID of some
movie) serve explicitly as OIDs. Under other formulations, such syntactic objects are
viewed as placeholders during an intermediate stage of query evaluation and are (nonde-
terministically) replaced by distinct new OIDs in the final stage of query evaluation (see
Exercise 21.13).

The latter approach to OID creation, incorporated into complex value datalog ex-
tended to include also OID dereferencing, yields a language equivalent to whileyp;. As
with while,y;, this language is not determinate complete.

A Practical Language for OODBs

We briefly illustrate some object-oriented features of the language O,SQL, which was
introduced in Section 20.8. Several examples are presented there, that show how O,SQL
can be used to access and construct deeply nested complex values. We now indicate how
the use of objects and methods is incorporated into the language. It is interesting to note that
methods and nested complex values are elegantly combined in this language, which has the
appearance of SQL but is essentially based on the functional programming paradigm.

For this example, we again assume the complex value Films of Fig. 20.2, but we
assume that Age is a method defined for the class Person (and thus for Director).

select tuple (f.Director, f.Director.Age)
from fin Films
where f.Director not in flatten select m.Actors
from g in Films,
m in g.Movies
where g.Director = “Hitchcock”

(Recall that here the inner select-from-where clause returns a set of sets of actors. The
keyword flatten has the effect of forming the union of these sets to yield a set of actors.)
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21.4 Languages for Methods

So far, we have used an abstraction of methods (their signature) and ignored their imple-
mentations. In this section, we present two abstract programming languages for specifying
method implementations. Method implementations will be included in the specification
of methods in OODB schemas. In studying these languages, we emphasize two impor-
tant issues: type safety and expressive power. This focus largely motivates our choice of
languages and the particular abstractions considered.

The first language is an imperative programming language. The second, method
schemas, is representative of a functional style of database access. In the first language,
we will gather a number of features present in practical object-oriented database languages
(e.g., side-effect, iteration, conditionals). We will see that with these features, we get (as
could be expected) completeness, and we pay the obvious price for it: the undecidability
of many questions, such as type safety. With method schemas, we focus on the essence
of inheritance and methods. We voluntarily consider a limited language. We see that the
undecidability of type safety is a consequence of recursion in method calls. (We obtain
decidability in the restricted case of monadic methods.) With respect to expressiveness,
we present a surprising characterization of QPTIME in terms of a simple language with
methods.

For both languages, we study type safety and expressive power. We begin by dis-
cussing briefly the meaning of these notions in our context, and then we present the two
languages and the results.

An OODB schema S (with method implementations assigned to signatures) is type
safe if for each instance I of S and each syntactically correct method call on I, the execution
of this method does not result in a runtime type error (an illegal method call). When
the imperative programming language is used in method implementations, type safety is
undecidable. (It is possible, however, to obtain decidable sufficient conditions for type
safety.) For method schemas, type safety remains undecidable. Surprisingly, type safety
is decidable for monadic method schemas.

To evaluate the expressive power of OODB schemas using a particular language for
method implementation, a common approach is to simulate relational queries and then
ask what family of relational queries can be simulated. If OID creation is permitted, then
all computable relational queries can be simulated using the imperative language. The
expressive power of imperative methods without OID creation depends on the complex
types permitted in OODB schemas. We also present a result for the expressive power of
method schemas, showing that the family of method schemas using an ordered domain of
atomic elements expresses exactly QPTIME.

A Model with Imperative Methods

To consider the issue of type safety in a general context, we present the imperative (OODB)
model, which incorporates imperative method implementations. This model simplifies the
OODB model presented earlier by assuming that the type of each class is a tuple of values
and OIDs. However, a schema in this model will include an assignment of implementations
to method signatures.



564 Object Databases

The syntax for method implementations is

par: ujy, ..., up;
var: xi, ..., X/,
body: s1;...; 545
return x|

where the u;’s are parameters (n > 1), the x;’s are internal variables (/ > 1), and for each
p €1[1,q], sp is a statement of one of the following forms (where w, y, z range over
parameters and internal variables):

Basic operations

1) w :=self.
(i1) w := self.a for some field name a.
(i) w:=y.
@{iv) w:=m(y,..., z), for some method name m.

(v) self.a := w, for some field name a.

Class operations

(vi) w :=new(c), where c is a class.
(vii) delete(c, w), where c is a class.

(viii) foreachwincdosj;...;s;end, where cisaclassands], ..., s; are statements
having forms from this list.

Conditional

(ix) if yOz then s, where 0 is = or # and s is a statement having a form in this list
except for the conditional.

It is assumed that all internal variables are initialized before used to some default value
depending on their type. The intended semantics for the forms other than (viii) should
be clear. (Here clear does not mean ‘“easy to implement.” In particular, object deletion
is complex because all references to this object have to be deleted.) The looping construct
executes for each element of the extension (not disjoint extension) of class c. The execution
of the loop is viewed as nondeterministic, in the sense that the particular ordering used for
the elements of ¢ is not guaranteed by the implementation. In general, we focus on OODB
schemas in which different orders of execution of the loops yield OID-equivalent results
(note, however, that this property is undecidable, so it must be ensured by the programmer).

An imperative schema is a 6-tuple S = (C, o, <, M, G, ), where (C, 0, <, M, G) is
a schema as before; where the range of o is tuples of atomic and class types; and where u
is an assignment of implementations to signatures. The notion of instance for this model is
defined in the natural fashion.

It is straightforward to develop operational semantics for this model, where the execu-
tion of a given method call might be successful, nonterminating, or aborted (as the result
of a runtime type error) (Exercise 21.15a).
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Type Safety in the Imperative Model There are two ways that a runtime type error can
arise: (1) if the type of the result of an execution of method m does not lie within the type
specified by the relevant method signature of m; or (2) if a method is called on a tuple
of parameters that does not satisfy the domain part of the appropriate signature of m. We
assume that the range of all method signatures is any, and thus we focus on case (2).

A schema S is type safe if for each instance over S and each m(o, vy, ..., v,) method
call that satisfies the signature of m associated with the class of o, execution of this call is
either successful or nonterminating.

Given a Turing machine M, it is easy to develop a schema S in this model that can
simulate the operation of M on a suitable encoding of an input tape (Exercise 21.15c). This
shows that such schemas are computationally powerful and implies the usual undecidabil-
ity results. With regard to type safety, it is easy to verify the following (Exercise 21.16):

PROPOSITION 21.4.1 It is undecidable, given an imperative schema S, whether S is type
safe. This remains true, even if in method implementations conditional statements and the
new operator are prohibited and all methods are monadic (i.e., have only one argument).

A similar argument can be used to show that it is undecidable whether a given method
terminates on all inputs. Finally, a method m’ on class ¢’ is reachable from method m on
class ¢ in OODB schema S if there is some instance I of S and some tuple o, vy, ... with
o0 in ¢ such that the execution of m(o, vy, ...) leads to a call of m’ on some object in ¢’.
Reachability is also undecidable for imperative schemas.

Expressive Power of the Imperative Model

As discussed earlier, we measure the expressive power of OODB schemas in terms of the
relational queries they can simulate. A relational schema R = {Ry, ..., R,} is simulated
by an OODB schema S of this model if there are leaf classes ci, ..., ¢, in S, where the
number of attributes of ¢; is the arity of R; for i € [1, n] and where the type of each of
these attributes is atomic. We focus on instances in which no null values appear for such
attributes. Let R be a relational schema and S be an OODB schema that simulates R. An
instance I of R is simulated by instance J of S if for each tuple v € I(R;) there is exactly
one object o in the extension of ¢; such that the value associated with o is v and all other
classes of S are empty. Following this spirit, it is straightforward to define what it means
for a method call in schema S to simulate a relational query from R to relation schema R.

We consider only schema S for which different orders of evaluation of the looping
construct yield the same final result (i.e., generic mappings). We now have the following
(see Exercise 21.20):

THEOREM 21.4.2 The family of generic queries corresponding to imperative schemas
coincides with the family of all relational queries.

The preceding result relies on the presence of the new operator. It is natural to ask
about the expressive power of imperative schemas that do not support new. As discussed in
Exercise 21.21, the expressive power depends on the complex types permitted for objects.



566 Object Databases

Note also that imperative schemas can express all determinate queries. This uses the
nondeterminism of the for each construct. Naturally, nondeterministic queries that are not
determinate can also be expressed.

Method Schemas

We now present an abstract model for side-effect-free methods, called method schemas.
In this model, we focus almost exclusively on methods and their implementations. Two
kinds of methods are distinguished: base and composite. The base methods do not have
implementations: Their semantics is specified explicitly at the instance level. The imple-
mentations of composite methods consist of a composition of other methods.

We now introduce method schemas. In the next definition, we make the simplifying
assumption that there are no named values (only class names) in database schemas. In
fact, data is only stored in base methods. In the following, o | denotes the type assign-
ment o7 1(c) = [ ] for every class c. Because the type assignment provides no information
in method schemas (it is always o7 ), this assignment is not explicitly specified in the
schemas.

DEFINITION 21.4.3 A method schema is a 5-tuple S = (C, <, Mpgse, Mcopp, 4), Where
(C, o1, <) is a well-formed class hierarchy, Mpgse U Mcomp is a well-formed set of method
signatures for (C, oy}, <), and

* no method name occurs in both Mpgse and Meopp;

* each method signature in My, is of the formm : ¢y, ..., ¢, — any (method signa-
tures for Mj,,e are unrestricted, i.e., can have any class as range);

* 1 is an assignment of implementations to the method signatures of Mo, as fol-
lows: For a signature m : ¢y, ..., ¢, = any in Mcopp, (m : c1, ..., c, — any) is a
term obtained by composing methods in Mpgse and Meopp.

An example of an implementation for a method m : c¢1, c; — any is

m(-x» )’) Eml(mZ(x)v ml(xa y))

The semantics of methods is defined in the obvious way. For instance, to compute m (o, o),
one computes first o] = m3(0) and then 0, = m1 (o, 0'); the result is m1 (o1, 02). The range
of composite methods is left unspecified (it is any) because it is determined by the do-
main and the method implementation as a composition of methods. Because the range of
composite methods is always any, we will sometimes only specify their domain.

Let S = (C, <, Mpase; Mcomp, 1) be a method schema. An instance of S is a pair
I = (7, v), where m is an OID assignment for (C, <) and where v assigns a semantics
to the base methods. Note the difference from the imperative schemas of the previous
section, where 7 together with the method implementations was sufficient to determine
the semantics of methods. In contrast, the semantics of the base methods must be specified
in instances of method schemas.
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Inheritance of method implementations for method schemas is defined slightly differ-
ently from that for the OODB model given earlier. Specifically, given an n-ary method m
and invocation m(oy, . . . , 0,), where o; is in disjoint class ¢; for i € [1, n], the implementa-
tion for m is inherited from the implementation of signature m : c/l, N ¢, where this
is the unique signature that is pointwise least above cy, . .., ¢,. [Otherwise m is undefined
on input (o1, ..., 0p).]

An important special case is when methods take just one argument. Method schemas
using only such methods are called monadic. To emphasize the difference, unrestricted
method schemas are sometimes called polyadic.

ExAmpPLE 21.4.4 Consider the following monadic method schema. The classes in the
schema are

class ¢

class ¢’ < ¢

The base method signatures are

method my : ¢ — ¢’
method my . ¢ — ¢
method my : ¢’ — ¢

method mz : ¢’ — ¢
The composite method definitions are

method m : ¢ = ma(ma(mq(x)))
method m' : ¢ = m3(m’(m2(x)))

method m' : ¢’ = m(x)

Note that m’ is recursive and that calls to m’ on elements in ¢’ break the recursion.

Type Safety for Method Schemas As before, a method schema S is type safe if for each
instance I of S no method call on I leads to a runtime type error.

The following example demonstrates that the schema of Example 21.4.4 is not type
safe. Note how the interpretation v for base methods can be viewed as an assignment of
values for objects.

ExAMPLE 21.4.5 Recall the method schema of Example 21.4.4. An instance of this is
I = (7, v), where’

m(c) ={p.q}

m(c) ={r}

7 We write v(m)(p) rather than v(m1, ¢)(p) to simplify the presentation.
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and
v(imy)(p) =r v(ma)(p) =q
v(m)(g)l =1 v(ma)(q) =r v(m3)(r) = p.
vim)(r)=r v(mo)(r)=r

Consider the execution of m(p). This calls for the computation of m(ma(m1(p))) =
my(my(r)) = r. Thus the execution is successful. On the other hand, m’(p) leads to
a runtime type error: m'(p) = m3(m'(ma(p))) = m3(m’(q)) = m3(mz(m’(m2(q)))) =
m3(m3(m’'(r))) = m3(m3(m(r))) = m3(m3(r)) = m3(p), which is undefined and raises
a runtime type error. Thus the schema is not type safe.

It turns out that type safety of method schemas permitting polyadic methods is un-
decidable (Exercise 21.19). Interestingly, type safety is decidable for monadic method
schemas. We now sketch the proof of this result.

THEOREM 21.4.6 It is decidable in polynomial time whether a monadic method schema
is type safe.

Crux Let S = (C, <, Mpase, Mcomp, ) be a monadic method schema. We construct a
context-free grammar (see Chapter 2) that captures possible executions of a method call
over all instances of S. The grammar is Gg = (V,, V;, A, P), where the set V; of terminals
is the set of base method names (denoted Nps.) along with the symbols {(error), (ignore)},
and the set V,, of nonterminals includes start symbol A and

{[c,m, ]| c, ¢ are classes, and m is a method name}

The set P of production rules includes

(i) A — [c,m, ], if m is a composite method name and it is defined at ¢ or a
superclass of c.

(ii) [c, m, ¢'] — (error), if m is not defined at ¢ or a superclass of c.

(iii) [c, m, c'] — m, if m is a base method name, the resolution of m for cism : c; —
¢, and ¢’ < ¢p. (Note that ¢’ = ¢; is just a particular case.)

@iv) [c, m, c] — €, if m is a composite method name and the resolution of m for c is
the identity mapping.

W) [e,m, cy] = [c,my, c1llcr, ma, cal ... [en—1, My, ¢y, if m is a composite met-
hod, m on ¢ resolves to a method with implementation m,(m,—1(...(m;
(m1(x)))...)),and cy, ..., ¢, are arbitrary classes.

i) [c, m, '] — (ignore), for all classes c, ¢’ and method names m.

Given a successful execution of a method call m(0), it is easy to construct a word in L(Gg)
of the form m . ..m,, where the m;’s list the sequence of base methods called during the
execution. On the other hand, if the execution of m (o) leads to a runtime error, a word of the
formmy ...m;{error) ... can be formed. The terminal (ignore) can be used in cases where
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a nonterminal [c, m, ¢’] arises, such that m is a base method name and ¢’ is outside the
range of m for ¢. The productions of type (vi) are permitted for all nonterminals [c, m, ¢'],
although they are needed only for some of them.

It can be shown that S is type safe iff

L(Gs) N N, . error)VF = .

Because it can be tested if the intersection of a context-free language with a regular lan-
guage is empty, the preceding provides an algorithm for checking type safety. However, a
modification of the grammar Gg is needed to obtain the polynomial time test (see Exer-
cise 21.18). m

Expressive Power of Method Schemas We now argue that method schemas (with or-
der) simulate precisely the relational queries in QPTIME. The object-oriented features are
not central here: The same result can be shown for functional data models without such
features.

As for imperative schemas, we show that method schemas can simulate relational
queries. The encoding of these queries assumes an ordered domain, as is traditional in the
world of functional programming.

A relational database is encoded as follows:

(a) aclass elem contains objects representing the elements of the domain, and it has
zero as a subclass containing a unique element, say 0;

(b) a function pred, which is included as a base method,® provides the predecessor
function over elem U zero [pred(0) is, for instance, 0]; a base method 0 returns
the least element and another base method N the largest object in elem;

(c) to have the Booleans, we think of 0 as the value false and all objects in elem as
representations of true;

(d) an n-ary relation R is represented by an n-ary base method mp of signature
mpg :elem, ..., elem — elem, the characteristic function of R. [For a tuple ¢,
mpg(t) is true iff t is in R.]

Next we represent queries by composite methods. A query ¢ is computed by method
mg if my(t) is true (not in zero) iff ¢ is in the answer to query q.
The following illustrates how to compute with this simple language.

ExampLE 21.4.7 Consider relation R with R = {R(1, 1), R(1, 2)}. The class zero is
populated with the object 0 and the class elem with 1, 2. The base method pred is defined
by pred(2) = 1, pred(0) = pred(1) = 0. The base method mp is defined by mg(1,1) =
mpg(1,2) =1and mg(x, y) = 0 otherwise.

8 The function pred is a functional analog of the relation succ, which we have assumed is available
in every ordered database (a successor function could also have been used).
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Recall that each object in class elem is viewed as true and object 0 as false. We can
code the Boolean function and as follows:

for x, yin zero,zero and(x,y)=0
for x, yin elem, zero and(x,y)=0
for x, yin zero,elem and(x,y)=0

for x, yin elem, elem and(x,y)=N.

The other standard Boolean functions can be coded similarly. We can code the intersection
between two binary relations R and S with and(mg(x, y), ms(x, y)). As a last example,
the projection of a binary relation R over the first coordinate can be coded by a method
g1 defined by

g1 =m(x, N),

where m is given by

forx,yin elem,zero m(x,y)=mpg(x,y)
forx,yin elem,elem m(x,y)=or(mg(x,y), m(x,pred(y))).

We now state the following:
THEOREM 21.4.8 Method schemas over ordered databases express exactly QPTIME.

Crux Asindicated in the preceding example, we can construct composite methods for the
Boolean operations and, or, and not. For each k, we can also construct k k-ary functions
predj; fori € [1, k] that compute for each k tuple u the k components of the predecessor (in
lexicographical ordering) of u. Indeed, we can simulate an arbitrary relational operation
and more generally an arbitrary inflationary fixpoint. To see this, consider the transitive
closure query. It is computed with a method 7c defined (informally) as follows. Intuitively,
amethod tc(x, y) asks, “Is (x, y) in the transitive closure?”” Execution of fc(x, y) first calls
amethod m(x, y, N), whose intuitive meaning is “Is there a path of length N from x to y?”’
This will be computed by asking whether there is a path of length N — 1 (a recursive call to
m1), etc. This can be generalized to a construction that simulates an arbitrary inflationary
fixpoint query. Because the underlying domain is ordered, we have captured all QPTIME
queries. The converse follows from the fact that there are only polynomially many possible
method calls in the context of a given instance, and each method call in this model can
be answered in QPTIME. Moreover, loops in method calls can be detected in polynomial
time; calls giving rise to loops are assumed to output some designated special value. (See
Exercise 21.25.) =

We have presented an object-oriented approach in the applicative programming style.
There exists another important family of functional languages based on typed A calculi.
It is possible to consider database languages in this family as well. These calculi present
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additional advantages, such as being able to treat functions as objects and to use higher-
order functions (i.e., functions whose arguments are functions).

21.5 Further Issues for OODBs

As mentioned at the beginning of this chapter, the area of OODB is relatively young and
active. Much research is needed to understand OODBs as well as we understand relational
databases. A difficulty (and richness) is that there is still no well-accepted model. We
conclude this chapter with a brief look at some current research issues for OODBs. These
fall into two broad categories: advanced modeling features and dynamic aspects.

Advanced Modeling Features
This is not an exhaustive list of new features but a sample of some that are being studied:

Views: Views are intended to increase the flexibility of database systems, and it is natu-
ral to extend the notion of relational view to the OODB framework. However, unlike
relational views, OODB views might redefine the behavior of objects in addition to
restructuring their associated types. There are also significant issues raised by the pres-
ence of OIDs. For example, to maintain incrementally a materialized view with created
OIDs, the linkage between the base data and the created OIDs must be maintained.
Furthermore, if the view is virtual, then how should virtual OIDs be specified and
manipulated?

Object roles: The same entity may be involved in several roles. For instance, a director
may also be an actor. It is costly, if not infeasible, to forecast all cases in which this
may happen. Although not as important in object-oriented programming, in OODBs it
would be useful to permit the same object to live in several classes (a departure from
the disjoint OID assignment from which we started) and at least conceptually maintain
distinct repositories, one for each role. This feature is present in some semantic data
models; in the object-oriented context, it raises a number of interesting typing issues.

Schema design: Schema design techniques (e.g., based on dependencies and normal forms)
have emerged for the relational model (see Chapter 11). Although the richer model in
the OODB provides greater flexibility in selecting a schema, there is a concomitant
need for richer tools to facilitate schema design. The scope of schema design is en-
larged in the OODB context because of the interaction of methods within a schema
and application software for the schema.

Querying the schema: In many cases, information may be hidden in an OODB schema.
Suppose, for example, that movies were assigned categories such as “drama,” “west-
ern,” “suspense,” etc. In the relational model, this information would typically be rep-
resented using a new column in the Movies relation. A query such as “list all categories
of movie that Bergman directed” is easily answered. In an OODB, the category infor-
mation might be represented using different subclasses of the Movie class. Answering
this query now requires the ability of the query language to return class names, a fea-
ture not present in most current systems.
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Classification: A related problem concerns how, given an OODB schema, to classify
new data for this schema. This may arise when constructing a view, when merging
two databases, or when transforming a relational database into an OODB one by
objectifying tuples. The issue of classification, also called taxonomic reasoning, has
a long history in the field of knowledge representation in artificial intelligence, and
some research in this direction has been performed for semantic and object-oriented
databases.

Incorporating deductive capabilities: The logic-programming paradigm has offered a
tremendous enhancement of the relational model by providing an elegant and (in
many cases) intuitively appealing framework for expressing a broad family of queries.
For the past several years, researchers have been developing hybrids of the logic-
programming and object-oriented paradigms. Although it is very different in some
ways (because the OO paradigm has fundamentally imperative aspects), the perspec-
tive of logic programming provides alternative approaches to data access and object
creation.

Abstract data types: As mentioned earlier, OODB systems come equipped with several
constructors, such as set, list, or bag. It is also interesting to be able to extend the
language and the system with application-specific data types. This involves language
and typing issues, such as how to gracefully incorporate access mechanisms for the
new types into an existing language. It also involves system issues, such as how to
introduce appropriate indexing techniques for the new type.

Dynamic Issues

The semantics of updates in relational systems is simple: Perform the update if the result
complies with the dependencies of the schema. In an OODB, the issue is somewhat trickier.
For instance, can we allow the deletion of an object if this object is referred to somewhere in
the database (the dangling reference problem)? This is prohibited in some systems, whereas
other systems will accept the deletion and just mark the object as dead. Semantically, this
results in viewing all references to this object as nil.

Another issue is object migration. It is easy to modify the value of an object. But
changing the status of an object is more complicated. For example, a person in the database
may act in a movie and overnight be turned into an actor. In object-oriented programming
languages, objects are often not allowed to change classes. Although such limitations also
exist in most present OODBs, object migration is an important feature that is needed in
many database applications. One approach, followed by some semantic data models, is
to permit objects to be associated with multiple classes or roles and also permit them to
migrate to different classes over time. This raises fundamental issues with regard to typing.
For example, how do we treat a reference to the manager of a department (that should be of
type Employee) when he or she leaves the company and is turned into a “normal” person?

Finally, as with the relational model, we need to consider evolution of the schema
itself. The OODB context is much richer than the relational, because there are many more
kinds of changes to consider: the class hierarchy, the type of a class, additions or deletions
of methods, etc.
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tion, which avoids nondeterminism and introduces a parallel execution model, is developed
in [DV91]. Method schemas and Theorem 21.4.6 are from [AKRW92]; the functional per-
spective and Theorem 21.4.8 are from [HKR93].

OIDs have been part of many data models. For example, they are called surrogates in
[Cod79], I-values in [KV93a], or object identifiers in [AH87]. The notion of object and the
various forms of equalities among objects form the topic of [KC86]. Type inheritance and
multiple inheritance are studied in [CW85, Car88].

Since [KV84], various languages for models with objects have been proposed in the
various paradigms: calculus, algebra, rule based, or functional. Besides standard features
found in database languages without objects, the new primitives are centered around object
creation. Language-theoretic issues related to object creation were first considered in the
context of IQL [AK89]. Object creation is an essential component of IQL and is the main
reason for the completeness of the language. The need for a primitive in the style of copy
elimination to obtain determinate completeness was first noticed in [AK89]. The IQL
language is rule based with an inflationary fixpoint semantics in the style of datalog™ of
Chapter 14.

The logic-based perspective on object creation based on Skolem was first informally
discussed in [Mai86] and refined variously in [CW89a, HY90, KLW93, KW89]. In partic-
ular, F-logic [KLW93] considers a different approach to inheritance. In our framework, the
classification of objects is explicit; in particular, when an object is created, it is within an
explicit class. In [KLW93], data organization is also specified by rules and thus may de-
pend on the properties of the objects involved. For instance, reasoning about the hierarchy
becomes part of the program.

Algebraic and imperative approaches to object creation are developed in [Day89].
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Since then, object creation has been the center of much interesting research (e.g., [DV93,
HS89b, HY92, VandBG92, VandBGAG92, VandB93]). The characterization of queries ex-
pressible in while,p; (Theorem 21.3.2) is from [VandBG92]; this extends a previous result
from [AP92]. The proof of Proposition 21.3.3 is also from [VandBGAG92]. In [Vand-
BGAG92, VandB93], it is argued that the notion of determinate query may not be the
most appropriate one for the object-based context, and alternative notions, such as semide-
terministic queries, are discussed. A tractable construct yielding a determinate-complete
language is exhibited in [DV93]. However, the construct proposed there is global in nature
and is involved. The search for simpler and more natural local constructs continues.

As mentioned earlier, the OODB calculus and algebra presented here are mostly
variations of languages for non object-based models and, in particular, of the languages
for complex values of Chapter 20. There have been several proposals of SQL extensions.
In particular, as indicated in Section 21.3, O,SQL [BCD89] retains the flavor of SQL but
incorporates object orientation by adopting an elegant functional programming style. This
approach has been advanced as a standard in [Cat94].

Functional approaches to databases have been considered rather early but attracted
only modest interest in the past [BFNS2, Shi81]. The functional approach has become more
popular recently, both because of the success of object-oriented databases and due to re-
cent results of complex objects and types emphasizing the functional models [BTBN92,
BTBW92]. The use of a typed functional language similar to A calculus as a formalism to
express queries is adapted from [HKMO93]. Characterizations of QPTIME in functional terms
are from [HKM93, LM93]. The work in [AKRW92, HKM93, HKR93] provides interest-
ing bridges between (object-oriented) databases and well-developed themes in computer
science: applicative program schemas [Cou90, Gre75] and typed A calculi [Chu41, Bar84,
Bar63].

This chapter presented both imperative and functional perspectives on OODB meth-
ods. A different approach (based on rules and datalog with negation) has been used in
[ALUW93] to provide semantics to a number of variations of schemas with methods. The
connection between methods and rule-based languages is also considered in [DV91].

Views for OODBs are considered in [AB91, Day89, HY90, KKS92, KLW93]. The
merging of OODBs is considered in [WHWO90]. Incremental maintenance of materialized
object-oriented views is considered in [Cha94]. The notion of object roles, or sharing ob-
jects between classes, is found in some semantic data models [AH87, HK87] and in recent
research on OODBs [ABGO93, RS91]. A query language that incorporates access to an
OODB schema is presented in [KKS92]. Classification has been central to the field of
knowledge representation in artificial intelligence, based on the central notion of taxo-
nomic reasoning (e.g., see [BGL85, MB92], which stem from the KL-ONE framework of
[BS85]); this approach has been carried to the context of OODBs in, for example, [BB92,
BS93, BBMR&9, DD89]. Deductive object-oriented database is the topic of a conference
(namely, the Intl. Conf. on Deductive and Object-Oriented Databases). Properties of object
migration between classes in a hierarchy are studied in [DS91, SZ89, Su92].
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Exercises

Exercise 21.1 Construct an instance for the schema of Fig. 21.1 that corresponds to the
CINEMA instance of Chapter 3.

Exercise 21.2 Suppose that the class Actor_Director were removed from the schema of
Fig. 21.1. Verify that in this case there is no OID assignment for the schema such that there
is an actor who is also a director.

Exercise 21.3 Design an OODB schema for a bibliography database with articles, book
chapters, etc. Use inheritance where possible.

Exercise 21.4 Exhibit a class hierarchy that is not well formed.

Exercise 21.5 Add methods to the schema of Fig. 21.1 so that the resulting family of methods
violates rules unambiguous and covariance.

Exercise 21.6 Show that testing whether I =¢;p J is in NP and at least at hard as the graph
isomorphism problem (i.e., testing whether two graphs are isomorphic).

Exercise 21.7 Give an algorithm for testing value equality. What is the data complexity of
your algorithm?

Exercise 21.8 In this exercise, we consider various forms of equality. Value equality as dis-
cussed in the text is denoted =;. Two objects o, o’ are 2-value equal, denoted 0 = o/, if replac-
ing each object in v(0) and v(0’) by its value yields values that are equal. The relations =; for
each i are defined similarly. Show that for each i, =; refines =;. Let n be a positive integer.
Give a schema and an instance over this schema such that for each i in [1, n], =; and =, are
different.

Exercise 21.9 Design a database schema to represent information about persons, including
males and females with names and husbands and wives. Exhibit a cyclic instance of the schema
and an object o that has an infinite expansion. Describe the infinite tree representing the expan-
sion of o.

* Exercise 21.10 Consider a database instance I over a schema S. For each o in I, let expand (o)
be the (possibly infinite) tree obtained by replacing each object by its value recursively. Show
that expand (o) is a regular tree (i.e., that it has a finite number of distinct subtrees). Derive from
this observation an algorithm for testing deep equality of objects.

Exercise 21.11 In this exercise, we consider the schema S with a single class c¢ that has type
o(c) =[A: ¢, B : string]. Exhibit an instance I over S and two distinct objects in I that have the
same expansion. Exhibit two distinct instances over S with the same set of object expansions.

Exercise 21.12 Sketch an extension of the complex value algebra to provide an algebraic
simulation of the calculus of Section 21.3. Give algebraic versions of the queries of that section.

® Exercise 21.13 Recall the approach to creating OIDs by extending datalog to use Skolem
function symbols. Consider the following programs:

T(fi(x,y),x) < Sx,y) T(f3(x,9),x) < S(x,y)

T(fa(x,y),x) < S(x,y) T(f3(y,x),x) < S(x,y)

T(fitx,y),y) < Sx,y),S(,x) T(fa(x,y),x) < S(x,y), Sy, x)
P 0
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(a) Two programs Pj, P, involving Skolem terms such as the foregoing are exposed
equivalent, denoted P| ~y, P», if for each input instance I having no OIDs, P;(I) =
P>(J). Show that P ~,y, O does not hold.

(b) Following the ILOG languages [HY92], given an instance J possibly with Skolem
terms, an obscured version of J is an instance J' obtained from J by replacing each
distinct nonatomic Skolem term with a new OID, where multiple occurrences of a
given Skolem term are replaced by the same OID. (Intuitively, this corresponds to
hiding the history of how each OID was created.) Two programs P;, P, are obscured
equivalent, denoted Pj ~,ps P2, if for each input instance I having no OIDs, if J; is
an obscured version of P;(I) and J, is an obscured version of P,(I), then J| =o;p J>.
Show that P~ Q.

(c) Let P and Q be two nonrecursive datalog programs, possibly with Skolem terms in
rule heads. Prove that it is decidable whether P ~,y, Q. Hint: Use the technique for
testing containment of unions of conjunctive queries (see Chapter 4).

* (d) A nonrecursive datalog program with Skolem terms in rule heads has isolated OID
invention if in each target relation at most one column can include nonatomic Skolem
terms (OID). Give a decision procedure for testing whether two such programs are
obscured equivalent. (Decidability of obscured equivalence of arbitrary nonrecursive
datalog programs with Skolem terms in rule heads remains open.)

® Exercise 21.14 [VandBGAG92] Prove the “only if” part of Theorem 21.3.2. Hint: Associate
traces to new object id’s, similar to the proof of Theorem 18.2.5. The extension homomorphism
is obtained via the natural extension to traces of automorphisms of the input.

Exercise 21.15 [HTY89]

(a) Define an operational semantics for the imperative model introduced in Section 21.4.

(b) Describe how a method in this model can simulate a whileloop of arbitrary length.
Hint: Use a class ¢ with associated type tuple(a : c, ...), and let ¢’ < ¢. Construct
the implementation of method m on ¢ so that on input o if the loop is to continue,
then it creates a new object o’ in ¢, sets 0.a = 0/, and calls m on o’. To terminate the
loop, create o’ in ¢/, and define m on ¢’ appropriately.

(c) Show how the computation of a Turing machine can be simulated by this model.
Exercise 21.16 Prove Proposition 21.4.1. Hint: Use a reduction from the PCP problem, sim-

ilar in spirit to the one used in the proof of Theorem 6.3.1. The effect of conditionals can be
simulated by putting objects in different classes and using dynamic binding.

Exercise 21.17 Describe how monadic method schemas can be simulated in the imperative
model.

Exercise 21.18 [AKRW92]

(a) Verify that the grammar Gg described in the proof of Theorem 21.4.6 has the stated
property.

(b) How big is Gg in terms of S?

(c) Find a variation of Gg that has size polynomial in the size of S. Hint: Break produc-

tion rules having form (v) into several rules, thereby reducing the overall size of the
grammar.
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(d) Complete the proof of the theorem.
Exercise 21.19 [AKRW92]

% (a) Show that it is undecidable whether a polyadic method schema is type safe. Hint: You
might use undecidability results for program schemas (see Bibliographic Notes), or
you might use a reduction from the PCP.

* (b) A schema is recursion free if there are no two methods m, m’ such that m occurs in
some code for m’ and conversely. Show that type safety is decidable for recursion-
free method schemas.

Exercise 21.20

(a) Complete the formal definition of an imperative schema simulating a relational
query.
(b) Prove Theorem 21.4.2.

& Exercise 21.21

(a) Suppose that the imperative model were extended to include types for classes that
have one level of the set construct (so tuple of set of tuple of atomic of class types is
permitted) and that the looping construct is extended to the sets occurring in these
types. Assume that the new command is not permitted. Prove that the family of
relational queries that this model can simulate is QPSPACE. Hint: Intuitively, because
the looping operates object at a time, it permits the construction of a nondeterministic
ordering of the database.

(b) Suppose that n levels of set nesting are permitted in the types of classes. Show that
this simulates QEXP" ! SPACE.

Exercise 21.22

(a) Describe how the form of method inheritance used for polyadic method schemas can
be simulated using the originally presented form of method inheritance, which is
based only on the class of the first argument.

(b) Suppose that a base method m g in an instance of a polyadic method schema is used
to simulate an n-ary relation R. In a simulation of this situation by an instance of a
conventional OODB schema, how many OIDs are present in the class on which mg
is simulated?

Exercise 21.23  Show how to encode or, not, and equal using method schemas.
Exercise 21.24 Show how to encode pred}; and the join operation using method schemas.

® Exercise 21.25 [HKR93] Prove Theorem 21.4.8. Hint: Show first that method schemas can
simulate relational algebra and then inflationary fixpoint. For the fixpoint, you might want to
use pred,. For the other direction, you might want to simulate method schemas over ordered
databases by inflationary fixpoint.






Dynamic Aspects

Alice:  How come we’ve waited so long to talk about something so important?
Riccardo:  Talking about change is hard.
Sergio:  We’re only starting to get a grip on it.
Vittorio:  And still have a long way to go.

t a fundamental level, updating a database is essentially imperative programming.

However, the persistence, size, and long life cycle of a database lead to perspec-
tives somewhat different from those found in programming languages. In this chapter, we
briefly examine some of these differences and sketch some of the directions that have been
explored in this area. Although it is central to databases, this area has received far less at-
tention from the theoretical research community than other topics addressed in this book.
The discussion in this chapter is intended primarily to give an overview of the important is-
sues raised concerning the dynamic aspects of databases. It therefore emphasizes examples
and intuitions much more than results and proofs.

This chapter begins by examining database update languages, including a simple
language that corresponds to the update capabilities of practical languages such as SQL,
and more complex ones expressed within a logic-based framework. Next optimization and
semantic properties of transactions built from simple update commands are considered,
including a discussion of the interaction of transactions and static integrity constraints.

The impact of updates in richer contexts is then considered. In connection with views,
we examine the issue of how to propagate updates incrementally from base data to views
and the much more challenging issue of propagating an update on a view back to the
base data. Next updates for incomplete information databases are considered. This includes
both the conditional tables studied in Chapter 19 and more general frameworks in which
databases are represented using logical theories.

The emerging field of active databases is then briefly presented. These incorporate
mechanisms for automatically responding to changes in the environment or the database,
and they often use a rule-based paradigm of specifying the responses.

This chapter concludes with a brief discussion of temporal databases, which support
the explicit representation of the time dimension and thus historical information.

A broad area related to dynamic aspects of databases (namely, concurrency control)
will not be addressed. This important area concerns mechanisms to increase the throughput
of a database system by interleaving multiple transactions while guaranteeing that the
semantics of the individual transactions is not lost.

579
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22.1 Update Languages

Before embarking on a brief excursion into update languages, we should answer the fol-
lowing natural question: Why are update languages necessary? Could we not use query
languages to specify updates?

The difference between query and update languages is subtle but important. To specify
an update, we could indeed define the new database as the answer to a query posed against
the old database. However, this misses an essential characteristic of updates: Most often,
they involve small changes to the current database. Query languages are not naturally suited
to speak explicitly about change. In contrast, update languages use as building blocks
simple statements expressing change, such as insertions, deletions, and modifications of
tuples in the database.

In this section, we outline several formal update languages and point to some theoret-
ical issues that arise in this context.

Insert-Delete-Modify Transactions

We begin with a simple procedural language to specify insertions, deletions, and modifica-
tions. Most commercial relational systems provide at least these update capabilities.

To simplify the presentation, we suppose that the database consists of a single relation
schema R. Everything can be extended to the multirelational case. An insertion is an
expression ins(t), where t is a tuple over att(R). This inserts the tuple 7 into R. [We
assume set-based semantics, under which ins(¢) has no effect if ¢ is already present in
R.] A deletion removes from R all tuples satisfying some stated set of conditions. More
precisely, a condition is an (in)equality of the form A = c or A # ¢, where A € att(R) and
c is a constant. A deletion is an expression del(C), where C is a finite set of conditions.
This removes from R all tuples satisfying each condition in C. Finally, a modification is
an expression mod(C — C’), where C, C’ are sets of conditions, with C’ containing only
equalities A = c¢. This selects all tuples in R satisfying C and then, for each such tuple
and each A = ¢ in C’, sets the value of A to c¢. An update over R is an insertion, deletion,
or modification over R. An IDM transaction (for insert, delete, modify) over R is a finite
sequence of updates over R. This is illustrated next.

ExampLE 22.1.1 Consider the relation schema Employee with attributes N (Name), D
(Department), R (Rank). The following IDM transaction fires the manager of the parts
department, transfers the manager of the sales department to the parts department, and
hires Moe as the new manager for the sales department:

del({D = parts, R = manager});
mod({D = sales, R = manager} — {D = parts});
ins(Moe, sales, manager)

The same update can be expressed in SQL as follows:

delete from Employee
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where D = “parts” and R = “manager”;
update Employee

set D = “parts”

where D = “sales” and R = “manager”;

9 ¢

insert into Employee values ( “Moe”,“sales”,“manager”)

As for queries, a question of central interest to update languages is optimization. To
see how IDM transactions can be optimized, it is useful to understand when two such
transactions are equivalent. It turns out that equivalence of IDM transactions has a sound
and complete axiomatization. Following are some simple axioms:

mod(C — C');del(C')y  =del(C); del(C")
ins(t); mod(C — C') = mod(C — C'); ins(t))
where ¢ satisfies C and {t'} = mod(C — C")({t})

and a slightly more complex one:

del(C3); mod(C1 — C3); mod(Cy — C1); mod(C3z — Cp)
= del(C3); mod(Cy — C3); mod(Cy — Cp); mod(C3 — Cy),

where C1, C3, C3 are mutually exclusive sets of conditions.
We can define criteria for the optimization of IDM transactions along two main lines:

Syntactic: We can take into account the length of the transaction as well as the kind of
operations involved (for example, it may be reasonable to assume that insertions are
simpler than modifications).

Semantic: This can be based on the number of tuple operations actually performed when
the transaction is applied.

Various definitions are possible based on the preceeding criteria. It can be shown that
there exists a polynomial-time algorithm that optimizes IDM transactions, with respect
to a reasonable definition based on syntactic and semantic criteria. The syntactic criteria
involve the number of insertions, deletions, and modifications. The semantic criteria are
based on the number of tuples touched at runtime by the transaction. We omit the details
here.

ExAaMPLE 22.1.2 Consider the IDM transaction over a relational schema R of sort AB:
mod({A #0, B=1}— {B =2});ins(0, 1); ins(3, 2);
mod({A=0,B=1}— {B=2});mod({A#0, B=0} - {B=1});
mod({A=0,B=0} > {B=1});mod({A#0, B=2}— {B=0});
mod({A =0, B=2} — {B=0});del({A #0, B=0}).

Assuming that insertions are less expensive than deletions, which are less expensive than
modifications, an optimal IDM transaction equivalent to the foregoing is
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del({A #0, B=1});del({A#0, B=2});
mod({A=0,B=1}— {B=2});
mod({B =0} — {B = 1});

mod({A =0,B =2} - {B=0});

ins(0, 0).

Thus the six modifications, one deletion, and two insertions of the original transaction were
replaced by three modifications, two deletions, and one insertion.

Another approach to optimization is to turn some of the axioms of equivalence into
simplification rules, as in

mod(C — C'); del(C") = del(C); del(C").

It can be shown that such a set of simplification rules can be used to optimize a restricted
set of IDM transactions that satisfy a syntactic acyclicity condition. For the other transac-
tions, applications of the simplification rules yield a simpler, but not necessarily optimal,
transaction. The simplification rules have the advantage that they are local and can be eas-
ily applied even online, whereas the complete optimization algorithm is global and has to
know the entire transaction in advance.

Rule-Based Update Languages

The IDM transactions provide a simple update language of limited power. This can be
extended in many ways. One possibility is to build another procedural language based
on tuple insertions, deletions, and modifications, which includes relation variables and
an iterative construct. Another, which we illustrate next, is to use a rule-based approach.
For example, consider the language datalog™ ™ described in Chapter 17, with its fixpoint
semantics. Recall that rules allow for both positive and negative atoms in heads of rules;
consistently with the fixpoint semantics, the positive atoms can be viewed as insertions
of facts and the negative atoms as deletions of facts. For example, the following program
removes all cycles of length one or two from the graph G:

—G(x,y) < Gx, ), G(y, x).

In the usual fixpoint semantics, rules are fired in parallel with all possible instantiations
for the variables. This yields a deterministic semantics. Some practical rule-based update
languages take an alternative approach, which yields a nondeterministic semantics: The
rules are fired one instantiation at a time. With this semantics, the preceeding program
provides some orientation of the graph G. Note that generally there is no way to obtain an
orientation of a graph deterministically, because a nondeterministic choice of edges to be
removed may be needed.

A deterministic language expressing all updates can be obtained by extending
datalog™™ with the ability to invent new values, in the spirit of the language while,;
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in Chapter 18. This can be done in the manner described in Exercise 18.22. The same
language with nondeterministic semantics can be shown to express all nondeterministic
updates.

The aforementioned languages yield a bottom-up evaluation procedure. The body of
the rule is first checked, and then the actions in the head are executed. Another possibility
is to adopt a top-down approach, in the spirit of the assert in Prolog. Here the actions
to be taken are specified in rule bodies. A good example of this approach is provided
by Dynamic Logic Programming (DLP). Interestingly, this language allows us to test
hypothetical conditions of the form “Would ¢ hold if r was inserted?” This, and the
connection of DLP with Prolog, is illustrated next.

ExamMPLE 22.1.3 Consider a database schema with relations ES of sort Emp,Sal (em-
ployees and their salaries), ED of sort Emp,Dep (employees and their departments), and
DA of sort Dep,Avg (average salary in each department).

Suppose that an update is intended to hire John in the toys department with a salary of
200K, under the condition that the average salary of the department stays below 50K . In
the language DLP, this update is expressed by

(hire(emp1, sall, depl)) <
(+ES(empl, sall))((+ED(emp1, depl))(DA(depl, avgl) & avgl < 50k)).

(Other rules are, of course, needed to define DA.) A call hire(John,200K, Toys) hires John in
the toys department only if, after hiring him, the average salary of the department remains
below 50K . The + symbol indicates an insertion. Here the conditions in parentheses should
hold after the two insertions have been performed; if not, then the update is not realized.
Testing a condition under the assumption of an update is a form of hypothetical reasoning.

It is interesting to contrast the semantics of DLP with that of Prolog. Consider the
following Prolog program:

:— assert(ES(john, 200)), assert(ED(john, toys)),
DA(toys, Avgl), Avgl < 50.

In this program, the insertions into ES and ED will be performed even if the conditions are
not satisfied afterward. (The reader familiar with Prolog is encouraged to write a program
that has the desired semantics.)

A similar top-down approach to updates is adopted in Logical Data Language (LDL).

Updates concern not only instances of a fixed schema. Sometimes the schema itself
needs to be changed (e.g., by adding an attribute). Some practical update languages include
constructs for schema change. The main problem to be resolved is how the existing data
can be fit to the new schema.

In deductive databases, some relations are defined using rules. Occasionally these
definitions may have to be changed, leading to updates of the “rule base.” There are
languages that can be used to specify such updates.
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22.2 Transactional Schemas

Typically, database systems restrict the kinds of updates that users can perform. There are
three main ways of doing this:

(a) Specify constraints (say, fd’s) that the database must satisfy and reject any update
that leads to a violation of the constraints.

(b) Restrict the updates themselves by only allowing the use of a set of prespecified,
valid updates.

(c) Permit users to request essentially arbitrary updates, but provide an automatic
mechanism for detecting and repairing constraint violations.

Object-oriented databases essentially embrace option (b); updates are performed only
by methods specified at the schema level, and it is assumed that these will not violate the
constraints (see Chapter 21). Both options (a) and (b) are present in the relational model.
Several commercial systems can recognize and abort on violation of simple constraints
(typically key and simple inclusion dependencies). However, maintenance of more com-
plex constraints is left to the application software. Option (c) is supported by the emerging
field of active databases, which is discussed in the following section.

We now briefly explore some issues related to approach (b) in connection with the
relational model. To illustrate the issues, we use simple procedures based on IDM transac-
tions. The procedures we use are parameterized IDM transactions, obtained by allowing
variables in addition to constants in conditions of IDM transactions. The variables are used
as parameters. A database schema R together with a finite set of parameterized IDM trans-
actions over R is called an IDM transactional schema.

ExampLE 22.2.1 Consider a database schema R with two relations, TA (Teaching Assis-
tant) of sort Name,Course, and PHD (Ph.D. student) of sort Name, Address. The following
IDM-parameterized transactions allow the hiring and firing of TAs (subscripts indicate the
relation to which each update applies):

hire(x, y, 7) = delta(Name = x); insta(x, y)
delppgp(Name = x); inspup(x, 2)
fire(x) =delts(Name = x)

The pair T = (R, {hire, fire}) is an IDM transactional schema. Note in this simple example
that once a name 7 is incorporated into the PHD relation, it can never be removed.

Clearly, we could similarly define transactional schemas in conjunction with any up-
date language.

Suppose T is an IDM transactional schema. To apply the parameterized transactions,
values must be supplied to the variables. A transaction obtained by replacing the variables
of a parameterized transaction ¢ in T by constants is a call to t. The only updates allowed
by an IDM transactional schema are performed by calls to its parameterized transactions.
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The set of instances that can be generated by such calls (starting from the empty instance)
is denoted Gen(T).

Transactional schemas offer an approach for constraint enforcement, essentially by
preventing updates that violate them. So it is important to understand to what extent they
can do so. First we need to clarify the issue. Suppose T is an IDM transactional schema
and X is a set of constraints over a database schema R; Sat(X) denotes all instances over
R satisfying X. If T is to replace X, we would expect the following properties to hold:

* soundness of T with respect to X: Gen(T) C Sar(X); and
» completeness of T with respect to X: Gen(T) 2 Sat(X).

Thus T is sound and complete with respect to X iff it generates precisely the instances
satisfying 2.

ExAmPLE 22.2.2 Consider again the IDM transactional schema T in Example 22.2.1. Let
% be the following constraints:

TA : Name — Course
PHD : Name — Address
TA[Name] < PHD[Name]

It is easily seen that T in Example 22.2.1 is sound and complete with respect to X. That is,
Gen(T) = Sat(X) (Exercise 22.7).

This example also highlights a limitation in the notion of completeness: It can be seen
that there are pairs I and J of instances in Saf(¥) where I cannot be transformed into J
using T. In other words, there are valid database states I and J such that when in state I,
J is never reachable. Such forbidden transitions are also a means of enriching the model,
because we can view them as temporal constraints on the database evolution. We will return
to temporal constraints later in this chapter.

Of course, the ability of transaction schemas to replace constraints depends on the
update language used. For IDM transactional schemas, we can show the following (Exer-
cise 22.8):

THEOREM 22.2.3 For each database schema R and set X of fd’s and acyclic inclusion de-
pendencies over R, there exists an IDM transactional schema T that is sound and complete
with respect to X.

Thus IDM transactional schemas are capable of replacing a significant set of con-
straints. The kind of difficulty that arises with more general constraints is illustrated next.

ExampLE 22.2.4 Consider a relation R of sort ABC and the following set ¥ of
constraints:
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* the embedded join dependency

s

Vxyzx'y'z' (R(xyz) A R(x'y'Z) = 3"R(xy'Z))),

* the functional dependency AB — C,

* the inclusion dependency R[A] € R[C],
* the inclusion dependency R[B] C R[A],
* the inclusion dependency R[A] C R[B].

It is easy to check that, for each relation satisfying the constraints, the number of con-
stants in the relation is a perfect square (n%, n > 0). Thus there are unbounded gaps be-
tween instances in Sat(X). There is no IDM transactional schema T such that Saz(¥) =
Gen(T), because the gaps cannot be crossed using calls to parameterized transactions with
a bounded number of parameters. Moreover, this problem is not specific to IDM trans-
actional schemas; it arises with any language in which procedures can only introduce a
bounded number of new constants into the database at each call.

Another natural question relating updates and constraints is, What about checking
soundness and/or completeness of IDM transactional schemas with respect to given con-
straints? Even in the case of IDM transactional schemas, such questions are generally unde-
cidable. There is one important exception: Soundness of IDM transactional schemas with
respect to fd’s is decidable. These questions are explored in Exercise 22.12.

22.3 Updating Views and Deductive Databases

We now turn to the impact of updates on views. Views are an important aspect of databases.
The interplay between views and updates is intricate. We can mention in particular two
important issues. One is the view maintenance problem: A view has been materialized and
the problem is to maintain it incrementally when the database is updated. An important
variation of this is in the context of deductive databases when the view consists of idb
relations. The other is known as the view update problem: Given a view and an update
against a view, the problem is to translate the update into a corresponding update against
the base data. This section considers these two issues in turn.

View Maintenance

Suppose that a base schema B and view schema V are given along with a (total) view map-
ping f : Inst(B) — Inst(V). Suppose further that a materialized view is to be maintained
[i.e., whenever the base database holds an instance Ig, then the view schema should be
holding f(Ip)].

For this discussion, an update for a schema R is considered to be a mapping from
Inst(R) to Inst(R). If constraints are present, it is assumed that an update cannot map to
instances violating the constraints. The updates considered here might be based on IDM
transactions or might be more general. We shall often speak of “the” update w that maps
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I, Ty
f f
Ip B
n

Figure 22.1: Relationship of views and updates

instance I to instance I, and by this we shall mean the set of insertions and deletions that
need to be made to I to obtain I'.

Suppose that the base database B is holding I3 and that update . maps this to I’y (see
Fig. 22.1). A naive way to keep the view up to date is to simply compute f (I';). However,
I’y is typically large relative to the difference between Iy and I,. It is thus natural to search
for more efficient ways to find the update v that maps Iy to I, = f(u(Ip)). This is the
view maintenance problem.

There are generally two main components to solutions of the view maintenance prob-
lem. The first involves developing algorithms to test whether an update to the base data can
affect the view. Given such an algorithm, an update is said to be irrelevant if the algorithm
certifies that the update cannot affect the view, and it is said to be relevant otherwise.

ExAMPLE 22.3.1 Let the base database schema be B = (R[AB], S[BC]), and consider
the following views:

V1= (Re<x0¢>509)
V2 = 7TAR
Vi=Re< S

V4 = JTAc(R > S).

Inserting (b, 20) into S cannot affect views V| or V;. On the other hand, whether or not this
insertion affects V3 or V4 depends on the data already present in the database.

Various algorithms have been developed for determining relevance with varying de-
grees of precision. A useful technique involves maintaining auxiliary information, as illus-
trated next.

ExXAMPLE 22.3.2 Recall view V; of Example 22.3.1, and suppose that R currently holds
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R|A B
a 20
a 30
a 80

Deleting (a, 20) has no impact on the view, whereas deleting (a’, 80) has the effect of
deleting (a’) from the view. One way to monitor this is to maintain a count on the number
of distinct ways that a value can arise; if this count ever reaches 0, then the value should be
deleted from the view.

The other main component of solutions to the view maintenance problem concerns the
development of incremental evaluation algorithms. This is closely related to the seminaive
algorithm for evaluating datalog programs (see Chapter 13).

ExAmMPLE 22.3.3 Recall view V3 from Example 22.3.1, and let A; and A;r denote sets
of tuples that are to be inserted into R and S, respectively. It is easily verified that

(RUAD = (SUAD = (RS U(RADH U AL =S U (A=A

Thus the new join can be found by performing three (typically smaller) joins followed by
some unions.

It is relatively straightforward to develop incremental evaluation expressions, such as
in the preceeding example, for all of the relational algebra operators (see Exercise 22.13).
In some cases, these expressions can be refined by using information about constraints,
such as key and functional dependencies, on the base data.

Incremental Update of Deductive Views

The view maintenance problem has also been studied in connection with views constructed
with (stratified) datalog™. In general, the techniques used are analogous to those discussed
earlier but are generalized to incorporate recursion. In the context of stratified datalog™,
various heuristics have been adapted from the field of belief revision for incrementally
maintaining supports (i.e., auxiliary information that holds the justifications for the pres-
ence of a fact in the materialized output of the program).

An interesting research direction that has recently emerged focuses on the ability of
first-order queries to express incremental updates on views defined using datalog. The
framework for these problems is as follows. The base schema B and view schema V are
as before, except that V contains only one relation and the view f is defined in terms of
a datalog program P. A basic question is, Given P, is there a first-order query ¢ such
that o (Ip, Iy, +R(¢)) = P(Ip U {R(¢)}) for each choice of I3, Iy = P(Ip) and insertion
+R(t) where R € B? If this holds, then P is said to be first-order incrementally definable
(FOID) (without auxiliary relations).
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ExAMPLE 22.3.4 Consider a binary relation G[A B] and the usual datalog program P that
computes the transitive closure of G in T[A B]. Suppose that [ is an instance of G, and J
is P(I). Suppose that tuple (a, b) is inserted into /. Then a tuple (a’, b’) will be inserted
into J iff one of the following occurs:

(@) ad =aandb =0,

(b) @’ =a and (b, b') € J;
(¢c) {(a’,a)e Jandb="b;o0r
(d) {(a’,a) e Jand (b,b')c J.

The preceeding conditions can clearly be specified by a first-order query. It easily follows
that P is FOID (see Exercise 22.21).

Several variations of FOIDs have been studied. These include FOIDs with auxiliary
relations (i.e., that permit the maintenance of derived relations not in the original data-
log program) and FOIDs that support incremental updates for sets of insertions and/or
deletions. FOIDs have been found for a number of restricted classes of datalog programs.
However, it remains open whether there is a datalog program that is not FOID with auxil-
iary relations.

Basic Issues in View Update

The view update problem is essentially the inverse of the view maintenance problem.
Referring again to Fig. 22.1, the problem now is, Given I, Iy, and update v on Iy, find an
update u so that the diagram commutes.

The first obvious problem here is the potential for ambiguity.

EXAMPLE 22.3.5 Recall the view V, of Example 22.3.1. Suppose that the base value of
R is {{a, b)} (and the base value of S is @). Thus the view holds {(a)}. Now consider an
update v to the view that inserts (a’). Some possible choices for u include

(a) Insert (a’, b) into R.

(b) Insert {(a’, b’) into R for some b’ € dom.

(c) Insert {{a’,b’) | b’ € X} into R, where X is a finite subset of dom.

(d) Insert (@', b’) into R for some b’ € dom, and replace {(a, b) by (a, b').
Possibility (d) seems undesirable, because it affects a tuple in a base relation that is,
intuitively speaking, independent of the view update. Possibilities (a) and (b) seem more

appealing than (c), but (c) cannot be ruled out. In any case, it is clear that there are a large
number of updates y that correspond to v.

The fundamental problem, then, is how to select one update u to the base data given
that many possibilities may exist. One approach to resolving the ambiguity involves exam-
ining the intended semantics of the database and the view.
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ExAMPLE 22.3.6 Consider a schema Employee[Name, Department, Team_position],
which records an employee’s department and the position he or she plays in the corpo-
rate baseball league. It is assumed that Name is a key. The value “no” indicates that the
employee does not play in the league. It is assumed that Name is a key. Consider the views
defined by

Sales = UDepartment:“Sales”(Employee)

Baseball = Employee, Team_position (0Team _position#“no” (Employee))

Typically, if tuple (“Joe”, “Sales”, “shortstop”) is deleted from the Sales view, then
this tuple should also be deleted from the underlying Employee relation. In contrast, if
tuple (“Joe”, “shortstop”) is deleted from the Baseball view, it is typically most natural to
replace the underlying tuple (“Joe”, d, “shortstop”) in Employee by (“Joe”, d, “no”) (i.e.,

to remove Joe from the baseball league rather than forcing him out of the company).

As just illustrated, the correct translation of a view update can easily depend on the
semantics associated with the view as well as the syntactic definition. Research in this
area has developed notions of update translations that perform a minimal change to the
underlying database. Algorithms that generate families of acceptable translations of views
have been developed, so that the database administrator may choose at view definition time
the most appropriate one.

Another issue in view update is that a requested update may not be permitted on the
view, essentially because of constraints implicit to the view definition and algorithm for
choosing translations of updates.

ExampLE 22.3.7 Recall the view V4 of Example 22.3.1, and suppose that the base data
is

R|A B S| B C
a 20 20 ¢
a 20 20 ¢

In this case the view contains {{a, c), (a, ¢/}, (d/, c), {a’, ¢}}.

Suppose that the user requests that (a, c) be deleted. Typically, this deletion is mapped
into one or more deletions against the base data. However, deleting R(a, 20) results in a
side-effect (namely, the deletion of (a, ¢’) from the view). Deletion of S(20, ¢) also yields
a side-effect.

Formal issues surrounding such side-effects of view updates are largely unexplored.
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Complements of Views

We now turn to a more abstract formulation of the view update problem. Although it is
relatively narrow, it provides an interesting perspective.

In this framework, a view over a base schema B is defined to be a (total) function f
from Inst(B) into some set. In practice this set is typically Inst (V) for some view schema V;
however, this is not required for this development. [The proof of Theorem 22.3.10, which
presents a completeness result, uses a view whose range is not Inst(V) for any schema V.]
A binary relation < on views is defined so that f < g if for all base instances I and I,
g = gT') implies f(I) = f(I). Intuitively, f < g if g can distinguish more instances
that f. For view f, let = be the equivalence relation on Inst(B) defined by I=/ 1’ iff
f@ = fX). Itis clear that f < g iff =, is a refinement of = and thus < can be viewed
as a partial order on the equivalence relations over Inst(B).

Two views f, g are equivalent, denoted f = g, if f < g and g < f. This is an equiva-
lence relation on views. In the following, the focus is primarily on the equivalence classes
under =. Let T denote the view that is simply the identity, and let L denote a view that
maps every base instance to . It is clear that (the equivalence classes represented by)
T and L are the maximal and minimal elements of the partial order <. We use cross-
product as a binary operator to create views: The product of views f and g is defined so
that (f x g)(I) = (f@), g(I)). View g is a complement of view f if f x g =T. Intu-
itively, this means that the base relations can be completely identified if both f and g are
available. Clearly, each view f has a trivial complement: T.

ExAmMPLE 22.3.8 (a) Let B = {R[ABC]} along with the fd R : A — B, and consider the
view f =mwspR. Let g = mscR. It follows from Proposition 8.2.2 that g is a complement
of f.

(b) Let B={R[AB]} and f = m4R. As mentioned earlier, T is a complement of f.
It turns out that there are other complements of f, but they cannot be expressed using the
relational algebra (see Exercise 22.25).

(c) Let B = {Employee(Name, Salary, Bonus, Total_pay)}, with the constraints that
Name is a key and that for each tuple (n, s, b, t) in Employee we have s + b = t. Consider
the view f = TTnume, salary(Employee). Consider the views

81 = nName,Bonus(Employee)

82 = nName,Total_pay(Employee).

Both g and g, are complements of f.

Thus each view has at least one complement (namely, T) and may have more than one
minimal complement.

In some cases, complements can be used to resolve ambiguity in the view update
problem in the following way. Suppose that view f has complement g, and suppose
that Iy = f(Ip) and update v on Iy are given. An update u is a g-translation of v if
f(udp)) =v(fdp)) and g(uIp)) = g(Ip) (see Fig. 22.2). Intuitively, a g-translation
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(flp), g(Ip)) - (v(fp)), g(Ip))

fxg (fxg!

Ip I'y
m

Figure 22.2: Properties of a g-translation u of view update v on view f

accomplishes the update but leaves g(Ip) fixed. By the properties of complements, for an
update v there is at most one g-translation of v.

EXAMPLE 22.3.9 (a) Recall the base schema {R[ABC]}, view f, and complement g of
Example 22.3.8(a). Suppose that (a, b) is in the view, and consider the update v on the
view that modifies {a, b) to {a, b’). The update u defined to modify all tuples (a, b, ¢) of
R into {a, b’, ¢} is a g-translation of v. On the other hand, given an insertion or deletion v
to the view, there is no g-translation of v.

(b) Recall the base schema, view f, and complementary views g; and g, of Exam-
ple 22.3.8(c). Suppose that (Joe, 200, 50, 250) is in Employee. Consider the update v that
replaces (Joe, 200) by (Joe, 210) in the view. Consider the updates

w1 = replace (Joe, 200, 50, 250) by (Joe, 210, 50, 260)
uo = replace (Joe, 200, 50, 250) by (Joe, 210, 40, 250).

Then w1 is the g-translation of v, and u; is the g>-translation of v.

Finally, we state a result showing that a restricted class of view updates can be trans-
lated into base updates using complementary views. To this end, we focus on updates of a
schema R that are total functions from Inst(R) to Inst(R). A family U of updates on R is
said to be complete if

(a) itis closed under composition (i.e., if  and w’ are in U, then so is w o u');

(b) it is closed under inverse in the following sense: VI € inst(R) Vu € U Iu’ € U
such that u/(n(I)) =L

Intuitively, condition (b) says that a user can always undo an update just made. It is certainly
natural to focus on complete sets of updates.

Let base schema B and view f be given, and let Uy be a family of updates on
the view. Let Up denote the family of all updates on the base schema. A translator for
Uy is a mapping t : Uy — Up such that for each base instance Ip and update v € Uy,
f(@&()Ap)) =v(fdp)). Clearly, solving the view update problem consists of coming up
with a translator.
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If g is a complement for f, then a translator ¢ is a g-translator if ¢t (v) is a g-translation
of v for each v € Uy.
We can now state the following (see Exercise 22.26):

THEOREM 22.3.10 Let base schema B and view f be given, and let U r be a complete set
of updates on the view. Suppose that # is a translator for U y. Then there is a complement g
of f such that ¢ is a g-translator for Uy.

Thus to find a translator for a complete set of view updates, it is sufficient to specify an
appropriate complementary view g and take the corresponding g-translator. The theorem
says that one can find such g if a translator exists at all.

The preceeding framework provides an abstract, elegant perspective on the view up-
date problem. Forming bridges to the more concrete frameworks in which views are defined
by specific languages (e.g., relational algebra) remains largely unexplored.

22.4 Updating Incomplete Information

In a sense, an update to a view is an incompletely specified update whose completion must
be determined or selected. In this section, we consider more general settings for studying
updates and incomplete information.

First we return to the conditional tables of Chapter 19 and show a system for updating
such databases. We then introduce formulations of incomplete information that use theories
(i.e., sets of propositional or first-order sentences) to represent the (partial) knowledge
about the world. Among other benefits, this approach offers an interesting alternative to
resolving the view update problem. This section concludes by comparing these approaches
to belief revision.

Updating Conditional Tables

The problems posed by updating a c-table are similar to those raised by queries. A rep-
resentation 7 specifies a set of possible worlds rep(T"). Given an update u, the possible
outcomes of the update are

u(rep(T)) = {u(@ [ I € rep(T)}.

As for queries, it is desirable to represent the result in the same representation system. If
the representation system is always capable of representing the answer to any update in a
language L, it is a strong representation system with respect to L.

Let us consider c-tables and simple insertions, deletions, and modifications, as in
the language of IDM transactions. We know from Chapter 19 that c-tables form a strong
representation system for relational algebra; and it is easily seen that IDM transactions
can be expressed in the algebra (see Exercise 22.3). It follows that c-tables are a strong
representation system for IDM transactions. In other words, for each c-table 7 and IDM
transaction ¢, there exists a c-table 7(T') such that rep(z(T)) = t (rep(T)).
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ExAMPLE 22.4.1 Consider the c-table in Example 19.3.1. Insertions ins(t) are straight-
forward: ¢ is simply inserted in the table. Consider the deletion d = del({Student =
Sally, Course = Physics}). The c-table 7(T) representing the result of the deletion is

Student  Course

(x # Math) A (x # CS) |
Sally Math (z=0)
Sally CS (z#0)
Sally X (x # Physics)

Alice Biology (z=0)
Alice Math (x = Physics) A (t=0)
Alice Physics  (x = Physics) A (t#0)

Consider again the original c-table 7" in Example 19.3.1 and the modification
m = mod ({Student = Sally, Course = Music} — {Course = Physics}).
The c-table m(T') representing the result of the modification is

Student  Course

(x #Math) A (x # CS)
Sally Math (z=0)
Sally CS (z#0)
Sally Physics  (x = Music)
Sally X (x # Music)

Alice Biology (z=0)
Alice Math (x = Physics) A (t=0)
Alice Physics  (x = Physics) A (t#0)

In the context of incomplete information, it is natural to consider updates that them-
selves have partial information. For c-tables, it seems appropriate to define updates with
the same kind of incomplete information, using tuples with variables subject to conditions.
We can define extensions of insertions, deletions, and modifications in this manner. It can
be shown that c-tables remain a strong representation system for such updates.

Representing Databases Using Logical Theories

Conditional tables provide a stylized, restricted framework for representing incomplete
information and are closed under a certain class of updates. We now turn to more general
frameworks for representing and updating incomplete information. These are based on
representing databases as logical theories.

Given a logical theory T (i.e., set of sentences), the set of models of T is denoted
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by Mod(T). In our context, each model corresponds to a different possible instance. If
|[Mod(T)| > 1, then T can be viewed as representing incomplete information.

In general, these approaches use the open world assumption (OWA). Recall from
Chapter 2 that under the closed world assumption (CWA), a fact is viewed as false unless it
can be proved from explicitly stated facts or sentences. In contrast, under the OWA if a fact
is not implied or contradicted by the underlying theory, then the fact may be true or false.
As a simple example, consider the theory T = {p} over a language with two propositional
constants p and g. Under the CWA, there is only one model of T (namely, {p}), but under
the OWA, there are two models (namely, {p} and {p, g}).

Model-Based Approaches to Updating Theories

One natural approach to updating a logical theory T is model based; it focuses on how
proposed updates affect the elements of Mod(T). Given an update u and instance I, let
u(I) denote the set of possible instances that could result from applying u to I. We use a set
for the result to accommodate the case in which u itself involves incomplete information.

Now let T be a theory and u an update. Under the model-based approach, the result
u(T) of applying u to T should be a theory T’ such that

Mod(T’) = Ufu(D) | I € Mod(T)}.

ExXAMPLE 22.4.2

(a) Consider the theory T = {p A g}, where p and g are propositional constants, and
the update [insert —p]. There is only one model of T (namely, {p, ¢}). If we take
the meaning of insert —p to be “make p false and leave other things unchanged,”
then updating this model yields the single model {g}. Thus the result of applying
[insert —p] to T yields the theory {g}.

(b) Consider T' = {p V ¢} and the update [insert —p]. The models of T’ and the
impact of the update are given by

{p} 0
{g} +—{q}
{p,q}— {q}.

Thus the result of applying the update to T’ is {—p}.

The approach to updating c-tables presented earlier falls within the model-based par-
adigm (see Exercise 22.14). A family of richer model-based frameworks that supports null
values and disjunctive updates has also been developed. An interesting dimension of vari-
ation in this approach concerns how permissive or restrictive a given update semantics is.
This essentially amounts to considering how many models are associated with u(I) for
given update u and instance I. As a simple example, consider starting with an empty data-
base Iy and the update [insert (p Vv q)]. Under a restrictive semantics, only {p} and {q}
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are in u(Iy), but under a permissive semantics, {p, ¢} might also be included. The update
semantics for c-tables given earlier is very permissive: All possible models corresponding
to an update are included in the result.

Formula-Based Approaches to Updating Theories

Another approach to updating theories is to apply updates directly to the theories them-
selves. As we shall see, a disadvantage of this approach is that the same update may have
a different effect on equivalent but distinct theories. On the other hand, this approach does
allow us to assign priorities to different sentences (e.g., so that constraints are given higher
priority than atomic facts).

We consider two forms of update: [insert ¢] and [delete ¢], where ¢ is a sentence (i.e.,
no free variables). Given theory T, a theory T’ accomplishes the update [insert ¢] for T if
¢ € T', and it accomplishes [delete ¢] for T if' ¢ ¢ T'*. Observe that there is a difference
between [insert —¢] and [delete ¢]: In the former case —¢ is true for all models of T,
whereas in the latter case ¢ may hold in some model of T'.

In general, we are interested in accomplishing an update for T with minimal impact
on T. Given theory T, we define a partial order <t on theories with respect to the degree
of change from T. In particular, we define T <y T if T—- T CcT—-T, orif T— T =
T—T and T — T C T” — T. Intuitively, T' <7 T” if T’ has fewer deletions (from T)
than T”, or both T” and T” have the same deletions but T’ has no more insertions than T”.
(Exercise 22.16 considers the opposite ordering, where insertions are given priority over
deletions.)

Intuitively, we are interested in theories T’ that accomplish a given update u for T and
are minimal under <. We say that such theories T’ accomplish u for T minimally. The
following characterizes such theories (see Exercise 22.15):

PROPOSITION 22.4.3 Let T, T’ be theories and ¢ a sentence. Then

(a) T’ accomplishes [delete ¢] for T minimally iff T’ is a maximal subset of T that
is consistent with —¢.

(b) T" U ¢ accomplishes [insert ¢] for T minimally iff T” is a maximal subset of T
that is consistent with .

Thus T’ accomplishes [delete ¢] for T minimally iff T U —¢ accomplishes [insert —¢]
for T minimally.

The following example shows that equivalent but distinct theories can be affected
differently by updates.

ExAaMPLE 22.4.4 (a) Consider the theory To = {p, ¢} and the update [insert —p]. Then
{—=p, q} is the unique minimal theory that accomplishes this update.

!'For a theory S, the (logical) closure of S, denoted S*, is the set of all sentences implied by S.
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(b) Let T = {p A q} and consider [insert —p]. The unique minimal theory that ac-
complishes this update for T; is {—p} [i.e., (¥ U {—=p})]. Note how this differs from the
model-based update in Example 22.4.2(a).

A problem at this point is that, in general, there are several theories that minimally
accomplish a given update. Thus an update to a theory may yield a set of theories, and so
the framework is not closed under updates. Given a set Ty, T», ..., we would like to find a
theory T whose models are exactly the union of all models of the set of theories. In general,
it is not clear that there is a theory that has this property. However, if there is only a finite
number of theories that are possible answers, then we can use the disjunction operator \/
defined by

\iTiliellnl}={niv v, |g el foriellnl

It is easily verified that Mod(\/{T; | i € [1,n]}) = U{Mod(T;) | i € [1, n]}. Of course,
there is a great likelihood of a combinatorial explosion if the disjunction operator is applied
repeatedly.

Assigning Priorities to Sentences

We now explore a mechanism for giving priority to some sentences in a theory over other
sentences. Let n > 0 be fixed. A fagged sentence is a pair (i, ¢), where i € [0, n] and ¢
is a sentence. A tagged theory is a set of tagged sentences. Given tagged theory T and
i €[1,n], T; denotes {¢ | (i, ) € T}.

The partial order for comparing theories is extended in the following natural fashion.
Given tagged theories T, T’ and T”, define T <t T” if for some i € [1, n] we have

Tj—T/j:Tj—T’f, foreach j € [1,i — 1]

and
T,—T;CcT;, - T}
or we have
T, — T’j =T, - T’Jf, for each j € [1,n]
and

T-TcT -T.

Intuitively, T' <t T” if the deletions of T’ and T” agree up to some level i and then T’
has fewer deletions at level i; or if the deletions match and T’ has fewer insertions. In this
manner, higher priority is given to the sentences having lower numbers.
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ExAMPLE 22.4.5 Consider a relation R[ABC] that satisfies the functional dependency
A — B, and consider the instance

R|A B C
a b c
a b (
a/ b/ C//
a// b/ C///

We now construct a tagged theory T to represent this situation and show how changing a
B value of a tuple is accomplished.

We assume three tag values and describe the contents of Tg, Ty, and T, in turn. Ty
holds the functional dependency and the unique name axiom (see Chapter 2). That is,

0,Vx, 9,2, Z(R(x,y,2) AR(x,Y,2) = y=y"),
0,a#a),(0,a#ad"),...,(0,a#b),...,0,c"#c")

T holds the following existential sentences:

(1,3x(R(a, x, ¢))),
(1, Ix(R(a, x, c))),
(1,3Ix(R(d’, x, ")),
(1, 3Ix(R@”, x, "))

Finally, T; holds

2, R(a, b, ¢)),

(2, R(a, b, ),

2,R@, b, ")),
(2’ R(a//’ b/’ C///))

Consider now the update u = [insert ¢], where ¢ = 3yR(a, b”, y). Intuitively, this
insertion should replace all {a, b) pairs occurring in w4 R by {(a, b"). More formally, it is
easy to verify that the unique tagged theory (up to choice of i) that accomplishes u is (see
Exercise 22.17)

(2, R(a,b”,c))

(2, R(a,b", )

2,R@, b, "))
(2’ R(a//’ b/’ C///))

(G, )} UToUT U

Thus the choice of sentences and tags included in the theory can influence the result
of an update.
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The approach of tagged theories can also be used to develop a framework for accom-
plishing view updates. The underlying database and the view are represented using a tagged
theory, and highest priority is given to ensuring that the complement of the view remains
fixed. Exercise 22.18 explores a simple example of this approach.

In the approach described here, a set of theories is combined using the disjunction
operator. In this case, multiple deletions can lead to an exponential blowup in the size
of the underlying theory, and performing insertions is Np-hard (see Exercise 22.19). This
provided one motivation for developing a generalization of the approach, in which families
of theories, called flocks, are used to represent a database with incomplete information.

Update versus Revision

The idea of representing knowledge using theories is not unique to the field of databases.
The field of belief revision takes this approach and considers the issue of revising a knowl-
edge base. Here we briefly compare the approaches to updating database theories described
earlier with those found in belief revision.

A starting point for belief revision theory is the set of rationality postulates of Al-
chourrén, Girdenfors, and Makinson, often referred to as the AGM postulates. These
present a general family of guidelines for when a theory accomplishes a revision, and they
include postulates such as

(R1) If T accomplishes [insert ¢] for T, then T’ = .

(R2) If ¢ is consistent with T, then the result of [insert ¢] on T should be equivalent to
T U {¢}.

(R3) If T=T and ¢ = ¢/, then the result of [insert ¢] on T is equivalent to the result of
[insert 'l on T'.

(This is a partial listing of the eight AGM postulates.) Other postulates focus on maintain-
ing satisfiability, relationships between the effects of different updates, and capturing some
aspects of minimal change.

It is clear from postulate (R3) that the formula-based approaches to updating database
theories do not qualify as belief revision systems. The relationship of the formula-based
approaches and belief revision is largely unexplored.

A key difference between belief revision and the model-based approach to updating
database theories stems from different perspectives on what a theory T is intended to
represent. In the former context, T is viewed as a set of beliefs about the state of the world.
If a new fact ¢ is to be inserted, this is a modification (and, it is hoped, improvement) of
our knowledge about the state of the world, but the world itself is considered to remain
unchanged. In contrast, in the model-based approaches, the theory T is used to identify a
set of worlds that are possible given the limited information currently available. If a fact ¢
is inserted, this is understood to mean that the world itself has been modified. Thus T is
modified to identify a different set of possible worlds.

ExXAMPLE 22.4.6 Suppose that the world of interest is a room with a table in it. There is
an abacus and a (hand-held, electronic) calculator in the room. Let proposition a mean that
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the abacus is on the table, and let proposition ¢ mean that the calculator is on the table.
Finally, let T be (a A —c) V (—a A ¢).

From the perspective of belief revision, T indicates that according to our current
knowledge, either the abacus or the calculator is on the table, but not both. Suppose that
we are informed that the calculator is on the table (i.e., [insert c]). This is viewed as
additional knowledge about the unchanging world. Combining T with ¢, we obtain the new
theory T1 = ((a A —¢) V (—a A ¢)) A c = (—a A c). [Note that this outcome is required by
postulate (R2).]

From the model-based perspective, T indicates that either the world is {a} or it is {c}.
The request [insert c] is understood to mean that the world has been modified so that ¢ has
become true. This can be envisioned in terms of having a robot enter the room and place the
calculator on the table (if it isn’t already there) without reporting on the status of anything
except that the robot has been successful. As a result, the world {a} is replaced by {a, c},
and the world {c} is replaced by itself. The resulting theory is T, = ¢ (which is interpreted
under the OWA).

A set of postulates for updates, analogous to the AGM postulates for revision, has been
developed. The postulate analogous to (R2) is

(U2) If T implies ¢, then the result of [insert ¢] on T should be equivalent to T.

This is strictly weaker than (R2). Other postulates enforce the intuition that the effect of
an update on a possible model is independent of the other possible models of a theory,
maintaining satisfiability and relationships between the effects of different updates.

22.5 Active Databases

As we have seen, object orientation provides one paradigm for incorporating behavioral
information into a database schema. This has the effect of separating a portion of the be-
havioral information from the application software and providing a more structured repre-
sentation and organization for that portion. In this section, we briefly consider a second,
essentially orthogonal, paradigm for separating a portion of the behavioral information
from the application software. This emerging paradigm, called activeness, stems from a
synthesis of techniques from databases, on the one hand, and expert systems and artificial
intelligence, on the other.

Active databases generally support the automatic triggering of updates in response to
internal or external events (e.g., a clock tick, a user-requested update, or a change in a
sensor reading). In a manner reminiscent of expert systems, forward chaining of rules is
generally used to accomplish the response. However, there are several differences between
classical expert systems and active databases. At the conceptual and logical level, the
differences are centered around the expressive power of rule conditions and the semantics
of rule application. (Some active database systems, such as POSTGRES, also support a
form of backward chaining or query rewriting; this is not considered here.)

Active databases have been shown to be useful in a variety of areas, including con-
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Suppliers | Sname Address Prices | Part Sname Price
The Depot 1210 Broadway nail  The Depot .02
Builder’s Mart 100 Main bolt The Depot .05

bolt Builder’s Mart .04
nut  Builder’s Mart .03

Figure 22.3: Sample instance for active database examples

straint maintenance, incremental update of materialized views, mapping view updates to
the base data, and supporting database interoperability.

Rules and Rule Application

There are three distinguishing components in an active database: (1) a subsystem for
monitoring events, (2) a set of rules, often called a rule base, and (3) a semantics for rule
application, typically called an execution model.

Rules typically have the following so-called ECA form:

on (event) if (condition) then (action).

Depending on the system and application, the event may range over external phenomena
and/or over internal events (such as a method call or inserting a tuple to a relation). Events
may be atomic or composite, where these are built up from atomic events using, say, regular
expressions or a process algebra. Events may be essentially Boolean or may return a tuple
of values that indicate what triggered the event.

Conditions typically involve parameters passed in by the events, and the contents of the
database. As will be described shortly, several systems permit conditions to look at more
than one version of the database state (e.g., corresponding to the state before the event and
the state after the event). In some systems, events are not explicitly specified; essentially
any change to the database makes the event true and leads to testing of all rule conditions.

In principle, the action may be a call to an arbitrary routine. In many cases in relational
systems, the action will involve a sequence of insertions, deletions, and modifications; and
in object-oriented systems it will involve one or more method calls. Note that this may in
turn trigger other rules.

The remainder of this discussion focuses on the relational model. A short example is
given, followed by a brief discussion of execution models.

ExAmPLE 22.5.1 Suppose that the Inventory database includes the following relations:

Suppliers[Sname, Address)

Prices[Part, Sname, Price]



602 Dynamic Aspects

Suppliers and the parts they supply are represented in Suppliers and Prices, respectively. It
is assumed that Sname is a key of Suppliers and Part, Sname is a key of Prices. An example
instance is shown in Fig. 22.3.

We now list some example rules. These rules are written in a pidgin language that
uses tuple variables. The variable T ranges over sets of tuples and is used to pass them
from the condition to the action. As detailed shortly, both (r1) considered in isolation and
the set (r2.a) ... (r2.d) taken together can be used to enforce the inclusion dependency
Prices[Sname] C Suppliers[Sname].

(rl) ontrue
if Prices(p) and p.Sname & wspame(Suppliers)
then Prices := Prices — {p}

(r2.a) on delete Sname(s)
if T := osname=s.Sname (Prices) is not empty
then Prices := Prices — T

(r2.b)  on modify Sname(s)
if old(s).Sname # new(s).Sname
and T = O Sname=old (s).Sname (Prices)
then set p.Sname = new(s).Sname
for each p in Prices
where pe T

(r2.c) oninsert Prices(p)
if (p.Sname) & wspame(Suppliers)
then issue supplier_warning(p)

(r2.d) on modify Prices(p)
if (new(p).Sname) & wspame(Suppliers)
then issue supplier_warning(new(p))

Consider rule (r1). If ever a state arises that violates the inclusion dependency, then the
rule deletes violating tuples from the Prices relation. The event of (rl) is always true; in
principle the database must check the condition whenever an update is made. It is easy to
see in this case that such checking need only be done if the relations Supplies or Prices are
updated, and so the event “on Supplies or Prices is updated” could be incorporated into
(r1). Although this does not change the effect of the rule, it provides a hint to the system
about how to implement it efficiently.

Rules (12.a) ... (12.d) form an alternative mechanism for enforcing the inclusion
dependency. In this case, the cause of the dependency violation determines the reaction
of the system. Here a deletion from (12.a) or modification (12.b) to Suppliers will result
in deletions from or modifications to Prices. In (r2.b), variable s ranges over tuples that
have been modified, old(s) refers to the original value of the tuple, and new(s) refers to the
modified value. On the other hand, changes to Prices that cause a violation [rules (r2.c) and
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(r2.d)] call a procedure supplier_warning; this might abort the transaction and warn the
user or dba of the constraint violation, or it might attempt to use heuristics to modify the
offending Sname value.

Execution Models

Until now, we have considered rules essentially in isolation from each other. A fundamental
issue concerns the choice of an execution model, which specifies how and when rules will
be applied. As will be seen, a wide variety of execution models are possible. The true
semantics of a rule base stems both from the rules themselves and from the execution model
for applying them.

We assume for this discussion that there is only one user of the system, or that a
concurrency control protocol is enforced that hides the effect of other users.

Suppose that a user transaction t = cy; .. .; ¢, is issued, where each of the ¢;’s is an
atomic command. In the absence of active database rules, application of ¢ will yield a
sequence

107111 ~~-7In

of database states, starting with the original state Iy and where each state I, is the result
of applying c; 4| to state I;. If rules are present, then a different sequence of states might
arise.

One dimension of variation between execution models concerns when rules are fired.
Under immediate firing, a rule is essentially fired as soon as its event and condition become
true; under deferred firing, rule application is delayed until after the state I, is reached; and
under concurrent firing, a separate process is spawned for the rule action and is executed
concurrently with other processes. In the most general execution models, each rule is
assigned its own coupling mode (i.e., immediate, deferred, or concurrent), which may be
further refined by associating a coupling mode between event and condition testing and
between condition testing and action execution.

We now examine the semantics of immediate and deferred firing in more detail. We
assume for this discussion that the event of each rule is simply true.

To illustrate immediate firing, suppose that a rule » with action dy; . . . ; d,, is triggered
(i.e., its condition has become true) in state I} of the preceeding sequence of states. Then
the sequence of databases states might start with

| (7 VT VI SRS
where I} is the result of applying d; to I; and I’jJrl is the result of applying d; | to I/j.
After I, the command ¢, would be applied. The semantics of intermediate rule firing
is in fact more complex, for two reasons. First, another rule might be triggered during
the execution of the action of the first triggered rule. In general, this calls for a recursive
style of rule application, where the command sequences of each triggered rule are placed
onto a stack. Second, several rules might be triggered at the same time. One approach in
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this case is to assume that the rules are ordered and that rules triggered simultaneously
are considered in that order. Another approach is to fire simultaneously-triggered rules
concurrently; essentially this has the effect of firing them in a nondeterministic order.

In the case of deferred firing, the full user transaction is completed before any rules are
fired, and each rule action is executed in its entirety before another rule action is initiated.
This gives rise to a sequence of states having the form

Iorig’ Iuser’ 12’ 13’ o Icurr’

where now I°" is the original state, I’ is the result of applying the user-requested
transaction, and the states I, Is, ..., I?" are the results of applying the actions of fired
rules. The sequence shown here might be extended if additional rules are to be fired.

Several intricacies arise. As before, the order of rule firing must be considered if
multiple rules are triggered at a given state. Recall the (r2) rules of Example 22.5.1, whose
events where based on transitions between some former state and some latter state. What
states should be used? It is natural to use I’ as the latter state. With regard to the former
state, some systems advocate using I°"¢, whereas other systems support the use of one of
the intermediate states (where the choice may depend on a complex condition).

Suppose that two rules r and r’ are triggered at some state I’” = I; and that r is fired
first to reach state I; 1 ;. The event and/or condition of 7" may no longer be true. This raises
the question, Should r’ be fired? A consensus has not emerged in the literature.

As should be clear from the preceeding discussion, there is a wide variety of choices
for execution models. A more subtle dimension of flexibility concerns the expressive power
of rule events and conditions: In addition to accessing the current state, should they be
able to access one or more previous ones? Several prototype active database systems have
been implemented; each uses a different execution model, and several permit access to
both current and previous states. It has been argued that different execution models may be
appropriate for different applications. This has given rise to systems that include a choice
of execution models and to languages that permit the specification of customized execution
models. An open problem at the time this book was written is to develop a natural syntax
that can be used to specify easily a broad range of execution models, including a substantial
subset of those described in the literature.

The while languages studied in Part E can serve as the kernel of an active database.
These languages do not use events; restrict rule actions to insertions, deletions, and value
creation; and examine only the current state in a rule firing sequence. If value creation is
supported, then these languages are complete for database mappings and so in some sense
can simulate all active databases. However, richer rules and execution models permit the
possibility of developing rule bases that enforce a desired set of policies in a more intuitive
fashion than a while program.

An Execution Model That Reaches a Unique Fixpoint

It should be clear that whatever execution model and form for rules is selected, most
questions about the behavior of an active database are undecidable. It is thus interesting
to consider more restricted execution models that behave in predictable ways. We now
present one such execution model, called the accumulating model; this forms a portion of
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the execution model of APS, a main-memory active database system that has been used in
research for over a decade.

To describe the accumulating execution model, we first introduce the notion of a delta.
Let R ={Ry, ..., R,} be a database schema. An atomic update over R is an expression of
the form +R;(¢) or —R;(¢), where i € [1, n] and ¢ is a tuple having the arity of R;. A delta
over R is a finite set of atomic updates over R that does not contain both +R(¢) and —R(t)
for any R and ¢ or the special value fail. (Modifies could also be incorporated into deltas,
but we do not consider that here.) A delta not containing the value fail is consistent. For
delta A, we define

AT ={(R(@) | +R(t) € A}
AT ={R(#) | —R@) € A}.

Given instance I and consistent delta A over R, the result of applying A to 1 is
applyd, A)=TUAT) — A" = - A )UAT.
Finally, the merge of two consistent deltas Ay, A, is defined by

A1 U Ay if this is consistent

Ar&hr = {fail otherwise.

The accumulating execution model uses deferred rule firing. Each rule action is viewed
as producing a consistent delta. The user-requested transaction is also considered to be the
delta A. Thus a sequence of states

I()rig — IO: [ser — Il, 12’ 13’ o Teurr

is produced, where 1" = apply(I°"¢, Ag) and, more generally, I, ;| = apply(I;, A;) for
some A; produced by a rule firing.

At this point the accumulating model is quite generic. We now restrict the model
and develop some interesting theoretical properties. First we assume that rules have only
conditions and actions (i.e., that the event part is always frue). Second, as noted before, we
assume that the action of each rule can be viewed as a delta. Furthermore, we assume that
these deltas use only constants from 1o7g (i.e., there is no invention of constants). Third
we insist that for each i > 0, Ap& ... &A; is consistent. More precisely, we modify the
execution model so that if for some i we have Ao& ... &A; = fail, then the execution is
aborted. Foreachi > 0, let A} = Ap& ... &A;.

Suppose that we are now in state I°/” with delta A““’". We assume that rule conditions
can access only 1€ and A“". (If the rule conditions have the power of, for example, the
relational calculus, this means they can in effect access I°“.) Given rule r, state I, and
delta A, the effect of r on I and A, denoted effect(r, I, A), is the delta corresponding to the
firing of r on I and A, if the condition of r is satisfied, and is  otherwise.

Execution proceeds as follows. The sequence Aj, A}, ... is constructed sequentially.
At the ith step, if there is no rule whose condition is satisfied by 178 and A;, then execution
terminates successfully. Otherwise a rule » with condition satisfied by I°% and Aj is
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selected nondeterministically. If A;&eﬁfect(r, | RS A;) is fail, then execution terminates
with an abort; otherwise set A} | = A/&effect(r, 1°¢, A7) and continue.

A natural question at this point is, Will execution always terminate? It is easy to see
that it does, because constants are not invented and the sequence of deltas being constructed
is monotonically increasing under set containment.

It is also natural to ask, Does the order of rule firing affect the outcome? In general, the
answer is yes. We now develop a semantic condition on rules that ensures independence of
rule firing order. A rule r is monotonic if for each instance I and pair A C A; of deltas,
effect(r, I, A1) C effect(r, I, A;). The following can now be shown (see Exercise 22.23):

THEOREM 22.5.2 If each rule in a rule base is monotonic, then the outcome of the
accumulating execution model on this rule base is independent of rule firing order.

Monitoring Events and Conditions

In Example 22.5.1, the events that triggered rules were primitive, in the sense that each
one corresponded to an atomic occurrence of some phenomenon. There has been recent
interest in developing languages for specifying and recognizing composite events, which
might involve the occurrence of several primitive events. For example, composite event
specification is supported by the ODE system, a recently released prototype object-oriented
active database system. The ODE system supports a rich language for specifying composite
events, which has essentially the power of regular expressions (see also Section 22.6
for examples of composite events specified by regular expressions). An implementation
technique based on finite state automata has been developed for recognizing composite
events specified in this language.

Other formalisms can also be used for specifying composite events (e.g., using Petri
nets or temporal logics). There appears to be a trade-off between the expressiveness of trig-
gers in rules and conditions. For example, some Petri-net-based languages for composite
events can be simulated using additional relations and rules based on simple events. The
details of such trade-offs are largely unexplored.

22.6 Temporal Databases and Constraints

Classical databases model static aspects of data. Thus the information in the database
consists of data currently true in the world. However, in many applications, information
about the history of data is just as important as static information. When history is taken
into account, queries can ask about the evolution of data through time; and constraints may
restrict the way changes occur. We briefly discuss these two aspects.

Temporal Databases

Suppose we are interested in a database over some schema R. Thus we wish to model and
query information about the content of the database through time. Conceptually, we can
associate to each time ¢ the state I; of the database at time ¢. Thus the database appears as a
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sequence of states—snapshots—indexed by some time domain. Two basic questions come
up immediately:

What is the meaning of I;? Primarily two possible answers have been proposed. The
first is that I, represents the data that was true in the world at time #; this view of time
is referred to as valid time. The second possibility is that time represents the moment
when the information was recorded in the database; this is called transaction time.

Clearly, using valid time requires including time as a first-class citizen in the
data model. In many applications transaction time might be hidden and dealt with
by the system; however, in time-critical applications, such as air-traffic control or
monitoring a power plant, transaction time may be important and made explicit. A
particular database may use valid time, transaction time, or both. In our discussion,
we will consider valid time only.

What is the time domain? This can be discrete (isomorphic to the integers), contin-
uous (isomorphic to the reals), or dense and countable (isomorphic to the rationals).
In databases, time is usually taken to be discrete, with some fixed granularity for
the time unit. However, several distinct time domains with different granularities
are often used (e.g., years, months, days, hours, etc.). The time domain is usually
equipped with a total order and sometimes with arithmetic operations. A temporal
variable now may be used to refer to the present time.

To query a temporal database, relational languages must be extended to take into
account the time coordinate. To say that a tuple u is in relation R at time ¢, we could simply
extend R with one temporal coordinate and write R(u,t). Then we could use CALC or
ALG on the extended relations. This is illustrated next.

ExAMPLE 22.6.1 Consider the CINEMA database, indexed by a time domain consisting
of dates of the form month/day/year. The query

“What were the movies shown at La Pagode in May, 1968?”

is expressed in CALC by

{m | 3s, t (Pariscope(La Pagode, m, s,t) A5/1/68 <t <5/31/68)}.

The query

“Since when has La Pagode been showing the current movie?”

is expressed by

where

{t | Am[3s (Pariscope(‘“La Pagode”, m, s, now))A

since(t, m) AVt (since(t”,m) — t <t")]},
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since(t, m) =Vt'[t <t <now — 3s’(Pariscope(*“La Pagode”, m, s’, t'))].

Classical logics augmented with a temporal coordinate have been studied extensively,
mostly geared toward specification and verification of concurrent programs. Such logics
are usually referred to as temporal logics. There is a wealth of mathematical machinery
developed around temporal logics; unfortunately, little of it seems to apply directly to
databases.

Although the view of a temporal database as a sequence of instances is conceptually
clean, it is extremely inefficient to represent a temporal database in this manner. In prac-
tice, this information is summarized in a single database in which data is timestamped to
indicate the time of validity. The timestamps can be placed at the tuple level or at the at-
tribute level. Typically, timestamps are unions of intervals of the temporal domain. Such
representations naturally lead to nested structures, as in the nested relation, semantic, and
object-oriented data models.

ExXAMPLE 22.6.2 Figure 22.4 is a representation of temporal information about Pari-
scope using attribute timestamps with nested relations. It would also be natural to represent
this using a semantic or object-oriented model.

The same information can be represented by timestamping at the tuple level, as
follows:

Pariscope | Theater Title Schedule
La Pagode Sleeper 19:00 [5/1/68-5/31/68]
La Pagode Sleeper 19:00 [7/15/74-7/31/74]
La Pagode Sleeper  19:00 [12/1/93-now]
La Pagode Sleeper 22:00 [8/1/74-8/14/75]
La Pagode Sleeper 22:00 [10/1/93-11/30/93]
La Pagode Psycho  19:00 [8/1/93-11/30/93]
La Pagode Psycho  22:00 [2/15/78-10/14/78]
La Pagode Psycho  22:00 [12/1/93-now]
Kinopanorama Sleeper 19:30 [4/1/90-10/31/90]
Kinopanorama Sleeper 19:30 [2/1/92-8/31/92]

In this representation, the time intervals are more fragmented. This may have some draw-
backs. For example, retrieving the information about when “Sleeper” was playing at La
Pagode (using a selection and projection) yields time intervals that are more fragmented
than needed. To obtain a more concise representation of the answer, we must merge some
of these intervals.

Note also the difference between the timestamps and the attribute Schedule, which
also conveys some temporal information. The value of Schedule is user defined, and the
database may not know that this is temporal information. Thus from the point of view of
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Pariscope | Theater Title Schedule
[5/1/68-5/31/68]
19:00 | [7/15/74=7/31/74]
[5/1/68-5/31/68] [12/1/93-now]
Sleeper | [7/15/74-8/14/75]
[10/1/93-now]
2200 | [B/1/74-8/14775]
V1 110/1/93-11/30/93]
La Pagode
19:00 | [8/1/93-11/30/93]
[2/15/78-10/14/78]
Psycho
[8/1/93-now] 2200 | [2/15/78-10114778]
V1 [12/1/93-now]
" . [4/1/90-10/31/90] lo:30 | [4/1/90-10/31/90]
inopanorama CEPET | 12/1/92-8/31/92] : [2/1/92-8/31/92]

Figure 22.4: A representation of temporal information using attribute timestamps with
nested relations

the temporal database, the value of Schedule is treated just like any other nontemporal value
in the database.

Much of the research in temporal databases has been devoted to finding extensions of
SQL and other relational languages suitable for temporal queries. Most proposals assume
some representation based on tuple timestamping by intervals and introduce intuitive lin-
guistic constructs to compare and manipulate these temporal intervals. Sometimes this is
done without explicit reference to time, in the spirit of modal operators in temporal logic.
One such operator is illustrated next.

ExXAMPLE 22.6.3 Several temporal extensions of SQL use a when clause to express a
temporal condition. For example, consider the query on the CINEMA database:

“Find the pairs of theaters that have shown some movie at the same date and hour.”

This can be expressed using the when clause as follows:
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select t|.theater, t).theater

from Pariscope t| t

where ?1.title = 1,.title and t;.schedule = t).schedule
when 1;.interval overlaps t.interval

The when clause is true for tuples 1, #, iff the intervals indicating their validity have
nonempty intersection. Other Boolean tests on intervals include before, after, during, fol-
lows, precedes, etc., with the obvious semantics. The expressive power of such constructs
is not always well elucidated in the literature, beyond the fact that they can clearly be ex-
pressed in CALC. A review of the many constructs proposed in the literature on temporal
databases is beyond the scope of this book. For the time being, it appears that a single
well-accepted temporal language is far from emerging, although there are several major
prototypes.

Temporal Deductive Databases

An interesting recent development involves the use of deductive databases in the temporal
framework, yielding temporal extensions of datalog. This can be used in two main ways.

* As a specification mechanism: Datalog-like rules allow the specification of some
temporal databases in a concise fashion. In particular, this allows us to specify
infinite temporal databases, with both past and future information.

* As a query mechanism: Rules can be used to express recursive temporal queries.

ExAMPLE 22.6.4 We first illustrate the use of rules in the specification of an infinite tem-
poral database. The database holds information on a professor’s schedule—more precisely,
the times she meets her two Ph.D. students. The facts

meets-first(Emma, 0), follows(Emma, John), follows(John, Emma)

say that the professor’s first meeting is with Emma, and then John and Emma take turns.
Consider the rules

meets(x,t) < meets-first(x, t)

meets(y,t + 1) < meets(x, t), follows(x, y)
The rules define the following infinite sequence of facts providing the professor’s schedule:

meets(Emma, 0)
meets(John, 1)
meets(Emma, 2)
meets(John, 3)
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Another way to use temporal rules is for querying. Consider the query

“Find the times ¢ such that La Pagode showed ‘Sleeper’ on date ¢ and continued
to show it at least until the Kinopanorama started showing it.”

The answer (given in the unary relation until) is defined by the following stratified program:

date(x, y,t) < Pariscope(x, y, s, t)

until (t) <« date(“Kinopanorama”, “Sleeper”, t + 1),
— date(“Kinopanorama”, “Sleeper”, t),
date(“La Pagode”, “Sleeper”, t)

until (t) <« date(“La Pagode”, “Sleeper”, t), until(t + 1)

The expressiveness of several datalog-like temporal languages and the complexity of
query evaluation using such languages are active areas of research.

Temporal Constraints

Classical constraints in relational databases are static: They speak about properties of the
data seen at some moment in time. This does not allow modeling the behavior of data.
Temporal (or dynamic) constraints place restrictions on how the data changes in time. They
can arise in the context of classical databases as well as in temporal databases. In temporal
databases, we can specify restrictions on the sequence of time-indexed instances using
temporal logics (extensions of CALC, or modal logics). These are essentially Boolean
(yes/no) temporal queries. For example, we might require that “La Pagode” not be a first-
run theater (i.e., every movie shown there must have been shown in some other theater at
some earlier time). An important question is how to enforce such constraints efficiently. A
step in this direction is suggested by the following example.

EXAMPLE 22.6.5 Suppose that Pariscope is extended with a time domain ranging over
days, as in Example 22.6.1. The constraint that “La Pagode” is not a first-run theater can
be expressed in CALC as

Vm, s, t (Pariscope(‘“La Pagode”, m, s, t)

— 3x, s', t'(Pariscope(x,m, s, t') A x # “La Pagode” A t' < 1))

A naive way to enforce this constraint involves maintaining the full history of the
relation Pariscope; this would require unbounded storage. A more efficient way involves
storing only the current value of Pariscope and maintaining a unary relation Shown_
Before[Title], which holds all movie titles that have been shown in the past at a theater
other than “La Pagode.” Note that the size of Shown_Before is bounded by the number of
titles that have occurred through the history of the database but is independent of how long
the database has been in existence. (Of course, if a new title is introduced each day, then
Shown_Before will have size comparable to the full history.)
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A systematic approach has been developed to maintain temporal constraints in this
fashion.

For classical databases, in which no history is kept, temporal constraints can only
involve transitions from the current instance to the next; this gives rise to a subset of
temporal constraints, called transition constraints

For instance, a transition constraint can state that “salaries do not decrease” or that
“the new salary of an employee is determined by the old salary and the seniority.” Such
transition constraints are by far the most common kind of temporal constraint considered
for databases. We discuss some ways to specify transition constraints. Clearly, these can
be stated using a temporal version of CALC that can refer to the previous and next state. A
notion of identity similar to object identity is useful here; otherwise we may have difficulty
speaking about the old and new versions of some tuple or entity. Such identity may be
provided by a key, assuming that it does not change in time.

Besides CALC, transition constraints may be stated in various other ways, including

e pre- and postconditions associated with transitions;
* extensions of classical static constraints, such as dynamic fd’s;
* computational constraints on sequences of consecutive versions of tuples.

Restrictions on updates—say, by transactional schemas—also induce temporal con-
straints. For instance, consider again the transactional schema in Example 22.2.1. It can be
verified that all possible sequences of instances obtained by calls to the transactions of that
schema satisfy the temporal constraint:

“Nobody can be a PhD student without having been a TA at some point.”
The following less desirable temporal constraint is also satisfied:
“Once a PhD student, always a PhD student.”

Overall, the connection between canned updates and temporal constraints remains largely
unexplored.

A related means of specifying temporal constraints is to identify a set of update events
and impose restrictions on valid sequences of events. This can be done using regular
expressions. For example, suppose that the events concerning an employee are

hire, transfer, promote, raise, fire, retire

The valid sequences of events are all prefixes of sequences specified by the regular
expression

hire[(transfer) + (promote + ¢)(raise)]*[(retire) + (fire)]

Thus an employee is first hired, receives some number of promotions and raises, may be
transferred, and finally either retires or is fired. Everybody who is promoted must also
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receive a raise, but raises may be received even without promotion. Such constraints appear
to be particularly well suited to object-oriented databases, in which events can naturally be
associated with method invocations. Some active databases (Section 22.5) can also enforce
constraints on sequences of events.
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Exercises

Exercise 22.1 Show that there are updates expressible by IDM transactions that are not ex-
pressible by ID transactions (i.e., transactions with just insertions and deletions).

Exercise 22.2 Prove the soundness of the equivalence axioms
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mod(C — C')del(C") = del(C)del(C)
ins(t)mod(C — C") =mod(C — Cins(t)
where 1 satisfies C and {t'} = mod(C — C")({t})

and

del(C3)mod(Cy — C3)mod(Cr, — Cy)mod(Cz — C»)
= del(C3)mod(Cy — C3)mod(Cy — Cp)mod(C3 — Cy),

where C|, C», C3 are mutually exclusive sets of conditions.

Exercise 22.3  Show that, for each IDM transaction, there exists a CALC query defining
the same result but that the converse is false. Characterize the portion of CALC (or ALG)
expressible by IDM transactions.

Exercise 22.4 [AV88b] Show that for every IDM transaction there exists an equivalent IDM
transaction of the form #4; t,,; t;, where #; is a sequence of deletions, f,, is a sequence of
modifications, and ¢ is a sequence of insertions.

® Exercise 22.5 [VV92] Let¢ty, ...t be IDM transactions over the same relation R. A schedule
s fortq, ..., t is an interleaving of the updates in the #;’s, such that the updates of each #; occur
in s in the same order as in #;. The schedule s is serializable if it is equivalent to t (1) . . . to (k)
for some permutation ¢ of {1, ..., k}.

(a) Prove that checking whether a schedule s for a set of IDM transactions #1, ..., # is
serializable is NP-complete with respect to the size of s.

(b) Show that checking the serializability of a schedule can be done in polynomial time
if the transactions contain no modifications.

® Exercise 22.6 [KV90a] Suppose m boxes By, ..., By, are given. Initially, each box B; is either
empty or contains some balls. Balls can be moved among boxes by any sequence of moves,
m (B}, By), each of which consists of putting the entire contents of box B into box By. Suppose
that the balls must be redistributed among boxes according to a given mapping f from boxes
to boxes [ f(B;) = By means that the contents of box B; must wind up in box By after the
redistribution].

(a) Show that redistribution according to a given mapping f cannot always be accom-
plished by a sequence of moves. If it can, the mapping f is called realizable. Char-
acterize realizable redistribution mappings.

(b) A parallel schedule of moves is a partially ordered set of moves (M,<) such that in-
comparable moves commute. (Thus incomparable moves are independent and can be
executed in parallel.) A parallel schedule takes time ¢ if the depth of the partial order
is ¢. Show that the problem of testing if a parallel schedule of moves accomplishes
the redistribution in minimal time (according to a realizable redistribution mapping)
is NpP-complete with respect to m.

(c) Show that testing if a parallel schedule accomplishes the redistribution in time within
one unit from the minimal time can be done in time polynomial in m.

(d) What is the connection between moving balls and IDM transactions?

Exercise 22.7 Recall the transaction schema T of Example 22.2.1 and the set X of constraints
in Example 22.2.2.
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(a) Prove that T is sound and complete with respect to X.
(b) Exhibit instances I and J in Sat(X), where I cannot be transformed into J using T.
(c) Write a transactional schema T’ that is sound and complete for X, such that whenever

L J are in Sat(X), there is a transformation from I to J using T’. (Do not use a T’
that completely empties the database to make a change involving only one student.)

Exercise 22.8 [AV89] Prove Theorem 22.2.3.
Exercise 22.9 Prove the statements in Example 22.2.4.
® Exercise 22.10 [AV89]

(a) Prove that it is undecidable whether I € Gen(T) for given IDM transactional schema
T and instance I over a database schema. Hint: Reduce the question of whether
w € L(M) for a word w and Turing machine M to the preceeding problem.

(b) Show that (a) becomes decidable if T is an ID transactional schema (no modifica-
tions). Hint: For I € Gen(T), find a bound on the number of calls to transactions in
T needed to reach I and on the number of constants used in these calls.

(¢) Prove that it is undecidable whether Gen(T) = Gen(T’) for given IDM transactional
schemas T and T'.

& Exercise 22.11 [AV89]

(a) Show that there is a relation schema R and a join dependency g over R such that
Sat({g}) # Gen(T) for each IDM transactional schema T over R.

(b) Prove that there is a database schema R and a set ¥ of inclusion dependencies over
R, such that Sat(X) # Gen(T) for each IDM transactional schema T over R.

® Exercise 22.12 [AV89] Prove that it is undecidable whether Gen(T) equals all instances over
R for given IDM transaction schema T over R. What does this say about the decidability of
soundness and completeness of IDM transaction schemas with respect to sets of constraints?

Exercise 22.13 [QW91] Develop expressions for incremental evaluation of the relational alge-
bra operators, analogous to the expression for join in Example 22.3.3. Consider both insertions
and deletions from the base relations.

Exercise 22.14 Recast c-tables in terms of first-order theories. Observe that the approach to
updating c-tables is model based. Given a theory T corresponding to a c-table and an update,
describe how to change T in accordance with the update. Hint: To represent c-tables using a
theory, you will need to use variations of the equality, extension, unique name, and closure
axioms mentioned at the end of Chapter 2.

Exercise 22.15 Prove Proposition 22.4.3.

Exercise 22.16 [FUV83] Given theory T, define T' <t T if T'— TCT'—T,orif T' — T =
T"—Tand T —T' C T — T”. Thus < is like <7, except that insertions are given priority over
deletions.

Let T be a closed theory, ¢ a sentence not in T, and T’ a closed theory that accomplishes
[insert @] for T. Show that {¢}* <1 T'.

Exercise 22.17 [FUV83] Verify the claim of Example 22.4.5.

Exercise 22.18 [FUV83] Let R[ABC] be a relation schema with functional dependency A —
B, and let I be the instance of Example 22.4.5.
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Consider the view f over S[AB] defined by m4p(R). A complement of this view is
wac(R). The idea of keeping this complement unchanged while updating the view is captured
by the sentences

dx(R(a, x,c)),
Ix(R(a, x, "))
Ax(R(d’, x, "))
Ax(R@a”, x, "))

Let Ty be that set of sentences. Let T include the functional dependency and the unique name
axioms. Finally, let T, include the four atoms of I. Verify that there is a unique tagged theory
that accomplishes the view update [insert S(a, b”)] with minimal change.

Exercise 22.19 [FUVS83] Show that under the formula-based approach to updating theories
presented in Section 22.4,
(a) A sequence of deletions can lead to an exponential blowup in the size of the theory.
(b) Determining the result of an insertion is Np-hard.

Exercise 22.20 [DT92, DS93] Give a formal definition of FOID and of FOID with auxiliary
relations. Include the cases in which sets of insertions and/or deletions are permitted.

® Exercise 22.21 [DT92]

(a) Verify the claim of Example 22.3.4, that the transitive closure query is FOID.
(b) Consider the datalog program

R(z) < R(x), S(x,y,2)
R(2) < R(y), S(x,y,2)
R(x) < T(x)

An intuitive interpretation of this is that the variables range over nodes in a graph,
and the predicate S(a, b, ¢) indicates that nodes a and b are connected by an or-gate
to node c. The relation R contains all nodes that have value true, assuming that the
nodes in the input relation 7 are initially set to true.

Prove that there is a FOID with auxiliary relations for R. Hint: Define a new
derived relation Q that holds paths of nodes with value true.

(c) Prove that there is no FOID without auxiliary relations for R.
* (d) A regular chain program consists of a finite set of chain rules of the form

R(xa Z) <~ R](.X, }’1)’ RZ(ylv y2)7 R Rn(ynfl» Z),

where the only idb predicate occurring in the body (if any) is R,. Show that each
regular chain program is FOID with auxiliary relations. In particular, describe an
algorithm that produces, for each regular chain program defining a predicate R, a
first-order query with auxiliary relations that incrementally evaluates the program.

Exercise 22.22 Specify in detail an active database execution model based on immediate rule
firing.

Exercise 22.23 [ZH90] Recall the accumulating execution model for active databases.
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(a) Exhibit a rule base for which the outcome of execution depends on the order of rule
firing.
(b) Prove Theorem 22.5.2.

* Exercise 22.24 [HJ91a] Recall that in the accumulating semantics, rule conditions can access
I°7%¢ and A“". Consider an alternative semantics that differs from the accumulating semantics
only in that the rule conditions can access only 1% and I°“’". Suppose that rule conditions have
the expressive power of the relational calculus (and in the case of the accumulating semantics,
the ability to access the sets AL ={R(@t) | +R(t) € A} and Ar ={R(t) | —R(t) € A}). Show
that the accumulating semantics is more expressive than the alternative semantics. Hint: It is
possible that A®” may have “redundant” elements, e.g., an update 4R (), where R(¢) € I°".
Such redundant elements are not accessible to the alternative semantics.

Exercise 22.25 Consider a base schema B = {R[AB]} and a view f = m4R, as in Exam-
ple 22.3.8(b).

(a) Describe a complement g of f that is not equivalent to T.
(b) Show that each complement g of f expressible in the relational algebra is equivalent

toT.

Exercise 22.26 [BS81] Prove Theorem 22.3.10. Hint: Consider the equivalence relation on
Inst(B) defined by I =1’ iff 3 update v € U £ such that I' =t (v)(I). Now define the mapping
g : Inst(I) — Inst(I)/ = so that g(I) is the equivalence class of I under =.






