
Processing XML Streams with Deterministic

Automata

Todd J. Green1, Gerome Miklau2, Makoto Onizuka3, and Dan Suciu2

1 Xyleme SA, Saint-Cloud, France todd.green@xyleme.com
2 University of Washington Department of Computer Science

{gerome,suciu}@cs.washington.edu
3 NTT Cyber Space Laboratories, NTT Corporation, oni@acm.org

Abstract. We consider the problem of evaluating a large number of
XPath expressions on an XML stream. Our main contribution consists
in showing that Deterministic Finite Automata (DFA) can be used effec-
tively for this problem: in our experiments we achieve a throughput of
about 5.4MB/s, independent of the number of XPath expressions (up to
1,000,000 in our tests). The major problem we face is that of the size of
the DFA. Since the number of states grows exponentially with the num-
ber of XPath expressions, it was previously believed that DFAs cannot
be used to process large sets of expressions. We make a theoretical analy-
sis of the number of states in the DFA resulting from XPath expressions,
and consider both the case when it is constructed eagerly, and when it
is constructed lazily. Our analysis indicates that, when the automaton
is constructed lazily, and under certain assumptions about the structure
of the input XML data, the number of states in the lazy DFA is man-
ageable. We also validate experimentally our findings, on both synthetic
and real XML data sets.

1 Introduction

Several applications of XML stream processing have emerged recently: content-
based XML routing [24], selective dissemination of information (SDI) [3, 6, 9],
continuous queries [7], and processing of scientific data stored in large XML
files [13, 25, 19]. They commonly need to process large numbers of XPath ex-
pressions (say 10,000 to 1,000,000), on continuous XML streams, at network
speed.

For illustration, consider XML Routing [24]. Here a network of XML routers

forwards a continuous stream of XML packets from data producers to consumers.
A router forwards each XML packet it receives to a subset of its output links
(other routers or clients). Forwarding decisions are made by evaluating a large
number of XPath filters, corresponding to clients’ subscription queries, on the
stream of XML packets. Data processing is minimal: there is no need for the
router to have an internal representation of the packet, or to buffer the packet
after it has forwarded it. Performance, however, is critical, and [24] reports very
poor performance with publicly-available tools.

2

Our contribution here is to show that the lazy Deterministic Finite Automata
(DFA) can be used effectively to process large numbers of XPath expressions, at
guaranteed throughput. The idea is to convert all XPath expressions into a sin-
gle DFA, then evaluate it on the input XML stream. DFAs are the most efficient
means to process XPath expressions: in our experiments we measured a sustained
throughput of about 5.4MB/s for arbitrary numbers of XPath expressions (up
to 1,000,000 in our tests), outperforming previous techniques [3] by factors up
to 10,000. But DFAs were thought impossible to use when the number of XPath
expressions is large, because the size of the DFA grows exponentially with that
number. We analyze here theoretically the number of states in the DFA for
XPath expressions, and consider both the case when the DFA is constructed
eagerly, and when it is constructed lazily. For the eager DFA, we show that the
number of label wild cards (denoted ∗ in XPath) is the only source of exponential
growth in the case of a single, linear XPath expression. This number, however,
is in general small in practice, and hence is of little concern. For multiple XPath
expressions, we show that the number of expression containing descendant axis
(denoted // in XPath) is another, much more significant source of exponential
growth. This makes eager DFAs prohibitive in practice. For the lazy DFA, how-
ever, we prove an upper bound on their size that is independent of the number
and shape of XPath expressions, and only depends on certain characteristics of
the XML stream, such as the data guide [11] or the graph schema [1, 5]. These
are small in many applications. Our theoretical results thus validate the use of
a lazy DFA for XML stream processing. We verify these results experimentally,
measuring the number of states in the lazy DFA for several synthetic and real
data sets. We also confirm experimentally the performance of the lazy DFA, and
find that a lazy DFA obtains constant throughput, independent of the number
of XPath expressions.

The techniques described here are part of an open-source software package4.
Paper Organization We begin with an overview in Sec. 2 of the architecture

in which the XPath expressions are used. We describe in detail processing with
a DFA in Sec. 3, then discuss its construction in Sec. 4 and analyze its size,
both theoretically and experimentally. Throughput experiments are discussed in
Sec. 5. We discuss implementation issues in Sec. 6, and related work in Sec 7.
Finally, we conclude in Sec. 8.

2 Overview

2.1 The Event-Based Processing Model

We start by describing the architecture of an XML stream processing system [4],
to illustrate the context in which XPath expressions are used. The user specifies
several correlated XPath expressions arranged in a tree, called the query tree.
An input XML stream is first parsed by a SAX parser that generates a stream
of SAX events (Fig. 1); this is input to the query processor that evaluates the

4 Described in [4] and available at xmltk.sourceforge.net.

3

XPath expressions and generates a stream of application events. The application
is notified of these events, and usually takes some action such as forwarding the
packet, notifying a client, or computing some values. An optional Stream Index
(called SIX) may accompany the XML stream to speed up processing [4]: we do
not discuss the index here.

The query tree, Q, has nodes labeled with variables and the edges with linear
XPath expressions, P , given by the following grammar:

P ::= /N | //N | PP N ::= E | A | text(S) | ∗ (1)

Here E,A, and S are an element label, an attribute label, and a string con-
stant respectively, and ∗ is the wild card. The function text(S) matches a text
node whose value is the string S. While filters, also called predicates, are not
explicitly allowed, we show below that they can be expressed. There is a distin-
guished variable, $R, which is always bound to the root. We leave out from our
presentation some system level details, for example the fact that the application
may specify under which application events it wants to receive the SAX events.
We refer the reader to [4] for system level details.

Example 1. The following is a query tree (tags taken from [19]):

$D IN $R/datasets/dataset $H IN $D/history

$T IN $D/title $TH IN $D/tableHead

$N IN $D//tableHead//* $F IN $TH/field

$V IN $N/text("Galaxy")

Fig. 2 shows this query tree graphically. Fig. 3 shows the result of evaluating
this query tree on an XML input stream: the first column shows the XML stream,
the second shows the SAX events generated by the parser, and the last column
shows the application events.

Filters Currently our query trees do not support XPath expressions with
filters (a.k.a. predicates). One can easily implement filters over query trees in a
naive way, as we illustrate here on the following XPath expression:

$X IN $R/catalog/product[@category="tools"][sales/@price > 200]/quantity

First decompose it into several XPath expression, and construct the query tree
Q in Fig. 4. Next we use our query tree processor, and add the following actions.
We declare two boolean variables, b1, b2. On a $Z event, set b1 to true; on a
$U event test the following text value and, if it is > 200, then set b2 to true. At
the end of a $Y event check whether b1=b2=true. This clearly implements the
two filters in our example. Such a method can be applied to arbitrary filters and
predicates, with appropriate bookkeeping, but clearly throughput will decrease
with the number of filters in the query tree. Approaches along these lines are
discussed in [3, 6, 9]. More advanced methods for handling filters include event
detection techniques [20] or pushdown automata [21].

The Event-based Processing Problem The problem that we address is:
given a query tree Q, preprocesses it, then evaluate it on an incoming XML

4

SIX Manager

SAX Parser Application

XML

Stream

SIX

Stream

Tree Pattern

skip(k)

skip(k)

SAX Events Application Events

(Lazy DFA)

Query Processor

Fig. 1. System’s Architecture

/datasets/dataset

/history /tableHead/title

$F

$D

$T $N $H $TH

$V

$R

/text("Galaxy")

SAX

/field

//tableHead//*

SAX

Fig. 2. A Query Tree

XML Parser Variable

Stream SAX Events Events

<datasets> start(datasets) start($R)
<dataset> start(dataset) start($D)
<history> start(history) start($H)
<date> start(date)
10/10/59 text("10/10/59")

</date> end(date)
</history> end(history) end($H)
<title> start(title) start($T)

<subtitle> start(subtitle)
Study text(Study)
</subtitle> end(subtitle)
</title> end(title)

end($T)
. . .

</dataset> end(dataset) end($D)

.

</datasets> end(datasets) end($R)

Fig. 3. Events generated by a
Query Tree

stream. The goal is to maximize the throughput at which we can process the
XML stream. A special case of a query tree, Q, is one in which every node is either
the root or a leaf node, i.e. has the form: $X1 in $R/e1, $X2 in $R/e2, . . . , $Xp in $R/ep
(each ei may start with // instead of /): we call Q a query set, or simply a set.
Each query tree Q can be rewritten into an equivalent query set Q′, as illustrated
in Fig. 4.

Q: Q’:

$Y IN $R/catalog/product $Y IN $R/catalog/product

$Z IN $Y/@category/text("tools") $Z IN $R/catalog/product/@category/text("tools")

$U IN $Y/sales/@price $U IN $R/catalog/product/sales/@price

$X IN $Y/quantity $X IN $R/catalog/product/quantity

Fig. 4. A query tree Q and an equivalent query set Q′.

3 Processing with DFAs

3.1 Background on DFAs

Our approach is to convert a query tree into a Deterministic Finite Automaton
(DFA). Recall that the query tree may be a very large collection of XPath
expressions: we convert all of them into a single DFA. This is done in two steps:
convert the query tree into a Nondeterministic Finite Automaton (NFA), then

5

convert the NFA to a DFA. We review here briefly the basic techniques for both
steps and refer the reader to a textbook for more details, e.g. [14]. Our running
example will be the query tree P shown in Fig. 5(a). The NFA, denoted An, is
illustrated in Fig. 5(b). Transitions labeled ∗ correspond to ∗ or // in P ; there
is one initial state; there is one terminal state for each variable ($X, $Y, . . .);
and there are ε-transitions 5. It is straightforward to generalize this to any query
tree. The number of states in An is proportional to the size of P .

Let Σ denote the set of all tags, attributes, and text constants occurring in
the query tree P , plus a special symbol ω representing any other symbol that
could be matched by ∗ or //. For w ∈ Σ∗ let An(w) denote the set of states in An

reachable on input w. In our example we have Σ = {a, b, d, ω}, and An(ε) = {1},
An(ab) = {3, 4, 7}, An(aω) = {3, 4}, An(b) = ∅.

The DFA for P , Ad, has the following set of states:

states(Ad) = {An(w) | w ∈ Σ∗} (2)

For our running example Ad is illustrated6 in Fig. 5 (c). Each state has unique
transitions, and one optional [other] transition, denoting any symbol in Σ
except the explicit transitions at that state: this is different from ∗ in An which
denotes any symbol. For example [other] at state {3, 4, 8, 9} denotes either a
or ω, while [other] at state {2, 3, 6} denotes a, d, or ω. Terminal states may be
labeled now with more than one variable, e.g. {3, 4, 5, 8, 9} is labeled $Y and $Z.

3.2 The DFA at Run time

Processing an XML stream with a DFA is very efficient. We maintain a pointer
to the current DFA state, and a stack of DFA states. SAX events are processed as
follows. On a start(element) event we push the current state on the stack, and
replace the state with the state reached by following the element transition7; on
an end(element) we pop a state from the stack and set it as the current state.
Attributes and text(string) are handled similarly. No memory management is
needed at run time8. Thus, each SAX event is processed in O(1) time, and we
can guarantee the throughput, independent of the number of XPath expressions.
The main issue is the size of the DFA, which we discuss next.

5 These are needed to separate the loops from the previous state. For example if we
merge states 2, 3, and 6 into a single state then the ∗ loop (corresponding to //)
would incorrectly apply to the right branch.

6 Technically, the state ∅ is also part of the DFA, and behaves like a “failure” state,
collecting all missing transitions. We do not illustrate it in our examples.

7 The state’s transitions are stored in a hash table.
8 The stack is a static array, currently set to 1024: this represents the maximum XML

depth that we can handle.

6

$X IN $R/a
$Y IN $X//*/b
$Z IN $X/b/*
$U IN $Z/d

$R

/a

//*/b /b/*

/d

$Y $Z

$U

$X

(a)

ε
ε

* b

$Z

*

ε

d

$U

$Y

b

3

6

7

4 8

95

10

*

a

$R

$X

1

2

(b)

a

$R

$X2,3,6

3,4,73,4

[other]

3,4,5

b

b
[other] [other]

3,4,5,8,9

b

$Y, $Z

3,4,8,9

$Z

3,4,10

d

$U

[other]

[other]

$Y
b

d

[other]

b

b

b

1

[other]

(c)

Fig. 5. (a) A query tree; (b) its NFA, An, and (c) its DFA, Ad.

4 Analyzing the Size of the DFA

For a general regular expression the size of the DFA may be exponential [14]. In
our setting, however, the expressions are restricted to XPath expressions defined
in Sec. 2.1, and general lower bounds do not apply automatically. We analyze and
discuss here the size of the eager and lazy DFAs for such XPath expressions. We
shall assume first that the XPath expressions have no text constants (text(S))
and, as a consequence, the alphabet Σ is small, then discuss in Sec. 4.4 the
impact of the constants on the number of states. As discussed at the end of
Sec.2 we will restrict our analysis to query trees that are sets.

4.1 The Eager DFA

Single XPath Expression A linear XPath expression has the form P =
p0//p1// . . . //pk where each pi is N1/N2/ . . . /Nni

, i = 0, . . . , k, and each Nj is
given by (1). We consider the following parameters:

k = number of //’s ni = length of pi, i = 0, . . . , k
m = max # of ∗’s in each pi n = length of P ,

∑
i=0,k ni

s = alphabet size =| Σ |

For example if P = //a/∗//a/∗/b/a/∗/a/b, then k = 2 (p0 = ε, p1 = a/∗, p2 =
a/∗/b/a/∗/a/b), s = 3 (Σ = {a, b, ω}), n = 9 (node tests: a, ∗, a, ∗, b, a, ∗, a, b),
and m = 2 (we have 2 ∗’s in p2). The following theorem gives an upper bound
on the number of states in the DFA, and is, technically, the hardest result in the
paper. The proof is in [12].

7

(a)

b

a

b

a

a

*

5

0

1

2

4

3

$X

a

[other]0

01

012 02

0123 023 013 03

01234 0234 0134 034

. . . .

a

a

a

a

a

[other]

[other] [other]

[other] [other]

b

02345

b b b

0345 0245 045

. . . .

.

$X $X $X $X

$X

a

*

*

*

b

*
0

5

1

2

4

3

b

a

b

a

a

0
[other]

$X

01

02

013

014

025

[other]

[other]

b

[other]

[other] a

[other]

a

(b) (c) (d)

a

Fig. 6. The NFA (a) and the DFA (b) for //a/b/a/a/b. The NFA (c) and the DFA
(with back edges removed) (d) for //a/*/*/*/b: here the eager DFA has 25 = 32 states,
while the lazy DFA, assuming the DTD <!ELEMENT a (a*|b)>, has at most 9 states.

Theorem 1. Given a linear XPath expression P , define prefix(P) = n0 and

suffix(P) = k +k(n−n0)s
m. Then the eager DFA for P has at most prefix(P)+

suffix(P) states. In particular, when k = 0 the DFA has at most n states, and

when k > 0 the DFA has at most k + knsm states.

We first illustrate the theorem in the case where there are no wild-cards (m = 0);
then there are at most k+kn states in the DFA. For example, if p = //a/b/a/a/b,
then k = 1, n = 5: the NFA and DFA shown in Fig. 6 (a) and (b), and indeed
the latter has 6 states. This generalizes to //N1/N2/ . . . /Nn: the DFA has only
n + 1 states, and is an isomorphic copy of the NFA plus some back transitions:
this corresponds to Knuth-Morris-Pratt’s string matching algorithm [8].

When there are wild cards (m > 0), the theorem gives an exponential upper
bound. There is a corresponding exponential lower bound, illustrated in Fig. 6
(c), (d), showing that the DFA for p = //a/∗/∗/∗/b, has 25 states. It is easy
to generalize this example and see that the DFA for //a/∗/ . . . /∗/b has 2m+2

states9, where m is the number of ∗’s.
Thus, the theorem shows that the only thing that can lead to an expo-

nential growth of the DFA is the maximum number of ∗’s between any two
consecutive //’s. One expects this number to be small in most practical applica-
tions; arguably users write expressions like /catalog//product//color rather
than /catalog//product/*/*/*/*/*/*/*/*/*/color. Some implementations
of XQuery already translate a single linear XPath expression into DFAs [15].

Multiple XPath Expressions For sets of XPath expressions, the DFA also
grows exponentially with the number expressions containing //. We illustrate
first, then state the lower and upper bounds.

Example 2. Consider four XPath expressions:

9 The theorem gives the upper bound: 1 + (m + 2)3m.

8

$X1 IN $R//book//figure $X2 IN $R//table//figure

$X3 IN $R//chapter//figure $X4 IN $R//note//figure

The eager DFA needs to remember what subset of tags of {book, table, chapter, note}
it has seen, resulting in at least 24 states. We generalize this below.

Proposition 1. Consider p XPath expressions: $X1 IN $R//a1//b . . .

$Xp IN $R//ap//b where a1, . . . , ap, b are distinct tags. Then the DFA has at

least 2p states.10

Theorem 2. Let Q be a set of XPath expressions. Then the number of states

in the eager DFA for Q is at most:
∑

P∈Q(prefix(P)) +
∏

P∈Q(1 + suffix(P)) In

particular, if A,B are constants s.t. ∀P ∈ Q, prefix(P) ≤ A and suffix(P) ≤ B,

then the number of states in the eager DFA is ≤ p × A + Bp′

, where p′ is the

number of XPath expressions P ∈ Q that contain //.

Recall that suffix(P) already contains an exponent, which we argued is small
in practice. The theorem shows that the extra exponent added by having multiple
XPath expressions is precisely the number of expressions with //’s. This result
should be contrasted with Aho and Corasick’s dictionary matching problem [2,
22]. There we are given a dictionary consisting of p words, {w1, . . . , wp}, and have
to compute the DFA for the set Q = {//w1, . . . , //wp}. Hence, this is a special
case where each XPath expression has a single, leading //, and has no ∗. The
main result in the dictionary matching problem is that the number of DFA states
is linear in the total size of Q. Theorem 2 is weaker in this special case, since
it counts each expression with a // toward the exponent. The theorem could be
strengthened to include in the exponent only XPath expressions with at least two
//’s, thus technically generalizing Aho and Corasick’s result. However, XPath
expressions with two or more occurrences of // must be added to the exponent,
as Proposition 1 shows. We chose not to strengthen Theorem 2 since it would
complicate both the statement and proof, with little practical significance.

Sets of XPath expressions like the ones we saw in Example 2 are common in
practice, and rule out the eager DFA, except in trivial cases. The solution is to
construct the DFA lazily, which we discuss next.

4.2 The Lazy DFA

The lazy DFA is constructed at run-time, on demand. Initially it has a single
state (the initial state), and whenever we attempt to make a transition into a
missing state we compute it, and update the transition. The hope is that only a
small set of the DFA states needs to be computed.

This idea has been used before in text processing, but it has never been
applied to such large number of expressions as required in our applications (e.g.
100,000): a careful analysis of the size of the lazy DFA is needed to justify its
feasibility. We prove two results, giving upper bounds on the number of states

10 Although this requires p distinct tags, the result can be shown with only 2 distinct
tags, and XPath expressions of depths n = O(log p), using standard techniques.

9

in the lazy DFA, that are specific to XML data, and that exploit either the
schema, or the data guide. We stress, however, that neither the schema nor the
data guide need to be known in order to use the lazy DFA, and only serve for
the theoretical results.

Formally, let Al be the lazy DFA. Its states are described by the following
equation which should be compared to Eq.(2):

states(Al) = {An(w) | w ∈ Ldata} (3)

Here Ldata is the set of all root-to-leaf sequences of tags in the input XML
streams. Assuming that the XML stream conforms to a schema (or DTD), de-
note Lschema all root-to-leaf sequences allowed by the schema: we have Ldata ⊆
Lschema ⊆ Σ∗.

We use graph schema [1, 5] to formalize our notion of schema, where nodes
are labeled with tags and edges denote inclusion relationships. Define a simple
cycle, c, in a graph schema to be a set of nodes c = {x0, x1, . . . , xn−1} which
can be ordered s.t. for every i = 0, . . . , n − 1, there exists an edge from xi to
xi+1 mod n. We say that a graph schema is simple, if for any two cycles c 6= c′,
we have c ∩ c′ = ∅.

We illustrate with the DTD in Fig. 7, which also shows its graph schema [1].
This DTD is simple, because the only cycles in its graph schema (shown in Fig. 7
(a)) are self-loops. All non-recursive DTDs are simple. For a simple graph schema
we denote d the maximum number of cycles that a simple paths can intersect
(hence d = 0 for non-recursive schemes), and D the total number of nonempty,
simple paths: D can be thought of as the number of nodes in the unfolding11. In
our example d = 2, D = 13, and the unfolded graph schema is shown in Fig. 7
(b). For a query set Q, denote n its depth, i.e. the maximum number of symbols
in any P ∈ Q (i.e. the maximum n, as in Sec. 4.1). We prove the following result
in [12]:

Theorem 3. Consider a simple graph schema with d,D, defined as above, and

let Q be a set of XPath expressions of maximum depth n. Then the lazy DFA

has at most 1 + D × (1 + n)d states.

The result is surprising, because the number of states does not depend on
the number of XPath expressions, only on their depths. In Example 2 the depth
is n = 2: for the DTD above, the theorem guarantees at most 1 + 13× 32 = 118
states in the lazy DFA. In practice, the depth is larger: for n = 10, the theorem
guarantees ≤ 1574 states, even if the number of XPath expressions increases
to, say, 100,000. By contrast, the eager DFA has ≥ 2100000 states (see Prop. 1).
Fig. 6 (d) shows another example: of the 25 states in the eager DFA only 9 are
expanded in the lazy DFA.

11 The constant D may, in theory, be exponential in the size of the schema because of
the unfolding, but in practice the shared tags typically occur at the bottom of the
DTD structure (see [23]), hence D is only modestly larger than the number of tags
in the DTD.

10

Theorem 3 has many applications. First for non-recursive DTDs (d = 0) the
lazy DFA has at most 1 + D states12. Second, in data-oriented XML instances,
recursion is often restricted to hierarchies, e.g. departments within departments,
parts within parts. Hence, their DTD is simple, and d is usually small. Finally,
the theorem also covers applications that handle documents from multiple DTDs
(e.g. in XML routing): here D is the sum over all DTDs, while d is the maximum
over all DTDs.

<!ELEMENT book (chapter*)>
<!ELEMENT chapter (section*)>
<!ELEMENT section ((para|table|note|figure)*)>
<!ELEMENT table ((table|text|note|figure)*)>
<!ELEMENT note ((note|text)*)>

table

note

tablepara

text text text

note note

text

chapter

book

section

chapter

book

rowfigure rowfigure

figure
section

para

(a) (b)

Fig. 7. A graph schema for a DTD (a) and
its unfolding (b).

DTD DTD (DTD Data
Source Names Statistics) size

No. Simple MB
elms ?

[synthetic] simple.dtd 12 Yes -

www.wapforum.org prov.dtd 3 Yes -

www.ebxml.org ebBPSS.dtd 29 Yes -

pir.georgetown.edu protein.dtd 66 Yes 684

xml.gsfc.nasa.gov nasa.dtd 117 No 24

UPenn Treebank treebank.dtd 249 No 56

Fig. 8. Sources of data used in ex-
periments. Only three real data
sets were available.

The theorem does not apply, however, to document-oriented XML data.
These have non-simple DTDs : for example a table may contain a table or
a footnote, and a footnote may also contain a table or a footnote (hence,
both {table} and {table, footnote} are cycles, and they share a node). For
such cases we give an upper bound on the size of the lazy DFA in terms of Data

Guides [11]. The data guide is a special case of a graph schema, with d = 0,
hence Theorem 3 gives:

Corollary 1. Let G be the number of nodes in the data guide of an XML stream.

Then, for any set Q of XPath expressions the lazy DFA for Q on that XML

stream has at most 1 + G states.

An empirical observation is that real XML data tends to have small data
guides, regardless of its DTD. For example users occasionally place a footnote

within a table, or vice versa, but do not nest elements in all possible ways
allowed by the schema. All XML data instances described in [16] have very small
data guides, except for Treebank [17], where the data guide has G = 340, 000
nodes.

12 This also follows directly from (3) since in this case Lschema is finite and has 1 + D
elements: one for w = ε, and one for each non-empty, simple paths.

11

Using the Schema or DTD If a Schema or DTD is available, it is possi-
ble to specialize the XPath expressions and remove all ∗’s and //’s, and replace
them with general Kleene closures: this is called query pruning in [10]. For exam-
ple for the schema in Fig. 7 (a), the expression //table//figure is pruned to
/book/chapter/section/(table)+/figure. This offers no advantage to com-
puting the DFA lazily, and should be treated orthogonally. Pruning may increase
the number of states in the DFA by up to a factor of D: for example, the lazy
(and eager) DFA for //* has only one state, but if we first prune it with respect
to a graph schema with D nodes, the DFA has D states.

Size of NFA tables A major component of the space used by the lazy DFA
are the sets of NFA states that need to be kept at each DFA state. We call these
sets NFA tables. The following proposition is straightforward, and ensures that
the NFA tables do not increase exponentially:

Proposition 2. Let Q be a set of p XPath expressions, of maximum depths n.

Then the size of each NFA table in the DFA for Q is at most n × p.

Despite the apparent positive result, the sets of NFA states are responsible
for most of the space in the lazy DFA, and we discuss them in Sec. 6.

4.3 Validation of the Size of the Lazy DFA

We ran experiments measuring the size of the lazy DFA for XML data for sev-
eral publicly available DTDs, and one synthetic DTD. We generated synthetic
data for these DTDs13. For three of the DTDs we also had access to real XML
instances. The DTDs and the available XML instances are summarized in Fig. 8:
four DTDs are simple, two are not; protein.dtd is non-recursive. We generated
three sets of queries of depth n = 20, with 1,000, 10,000, and 100,000 XPath
expressions14, with 5% probabilities for both the ∗ and the //.

Fig. 9(a) shows the number of states in the lazy DFA for the synthetic data.
The first four DTDs are simple, or non-recursive, hence Theorem 3 applies.
They had significantly less states than the upper bound in the theorem; e.g.
ebBPSS.dtd has 1058 states, while the upper bound is 12,790 (D = 29, d =
2, n = 20). The last two DTDs were not simple, and neither Theorem 3 nor
Corollary 1 applies (since synthetic data has large data guides). In one case
(Treebank, 100,000 expressions) we ran out of memory.

Fig. 9(b) shows the number of states in the lazy DFA for real data. This
is much lower than for synthetic data, because real data has small dataguides,
and Corollary 1 applies; by contrast, the dataguide for synthetic data may be
as large as the data itself. The nasa.dtd had a dataguide with 95 nodes, less
than the number of tags in the DTD (117) because not all the tags occurred
in the data. As a consequence, the lazy DFA had at most 95 states. Treebank
has a data guide with 340,000 nodes; the largest lazy DFA here had only 44,000
states.

13 Using http://www.alphaworks.ibm.com/tech/xmlgenerator.
14 We used the generator described in [9].

12

1

10

100

1000

10000

100000

simple prov ebBPSS protein nasa treebank

Number of DFA States - SYNTHETIC Data

1k XPEs

10k XPEs

100k XPEs

1

10

100

1000

10000

100000

protein nasa treebank

Number�of�DFA�States�-�REAL�Data

1k�XPEs

10k�XPEs

100k�XPEs

Fig. 9. Size of the lazy DFA for (left) synthetic data, and (right) real data. 1k means
1000 XPath expressions. For 100k XPath expressions for the treebank DTD with
synthetic data we ran out of memory.

We also measured experimentally the average size of the NFA tables in each
DFA state and found it to be around p/10, where p is the number of XPath
expressions (graph shown in the appendix). Proposition 2 also gives an upper
bound O(p), but the constant measured in the experiments is much lower than
that in the Theorem. These tables use most of the memory space and we address
them in Sec. 6. Finally, we measured the average size of the transition tables per
DFA state, and found it to be small (less than 40).

4.4 Constant Values

Finally, we comment on the impact of constant values on the number of states
in the DFA. Each linear XPath expression can now end in a text(S) predicate,
see Eq.(1). For a given set of XPath expressions, Q, let Σ denote the set of all
symbols in Q, including those of the form text(S). Let Σ = Σt ∪Σs, where Σt

contains all element and attribute labels and ω, while Σs contains all symbols of
the form text(S). The NFA for Q has a special, 2-tier structure: first an NFA
over Σt, followed by some Σs-transitions into sink states, i.e. with no outgoing
transitions. The corresponding DFA also has a two-tier structure: first the DFA
for the Σt part, denote it At, followed by Σs transitions into sink states. All
our previous upper bounds on the size of the lazy DFA apply to At. We now
have to count the additional sink states reached by text(S) transitions. For
that, let Σs = {text(S1), . . . , text(Sq)}, and let Qi, i = 1, . . . , q, be the set
of XPath expressions in Q that end in text(Si); we assume w.l.o.g. that every
XPath expression in Q ends in some predicate in Σs, hence Q = Q1 ∪ . . . ∪ Qq.
Denote Ai the DFA for Qi, and At

i its Σt-part. Let si be the number of states in
At

i, i = 1, . . . , q. All the previous upper bounds, in Theorem 1, Theorem 3, and
Corollary 1 apply to each si. We prove the following in [12].

Theorem 4. Given a set of XPath expressions Q, containing q distinct constant

values of the form text(S), the additional number of sink states in the lazy DFA

due to the constant values is at most
∑

i=1,q si.

13

5 Experiments

This section validates the throughput achieved by lazy DFAs in stream XML
processing. Our execution environment consists of a dual 750MHz SPARC V9
with 2048MB memory, running SunOS 5.8. Our compiler is gcc version 2.95.2,
without any optimization options.

We used the NASA XML dataset [19] and concatenated all the XML docu-
ments into one single file, which is about 25MB. We generated sets of 1k (= 1000),
10k, 100k, and 1000k XPath expression using the XPath generator from [9], and
varied the probability of ∗ and // to 0.1%, 1%, 10%, and 50% respectively.
We report the throughput as a function of each parameter, while keeping the
other two constant. For calibration and comparison we also report the through-
put for parsing the XML stream, and the throughput of XFilter [3], which we
re-implemented, without list balancing.

Figure 10 shows our results. In (a) we show the throughput as a function
of the number of XPath expressions. The most important observation is that in
the stable state (after processing the first 5-10MB of data) the throughput was
constant, about 5.4MB/s. Notice that this is about half the parser’s throughput,
which was about 10MB/s; of course, the XML stream needs to be parsed, hence
10MB/s should be seen as an upper bound on our platform. We observed in sev-
eral other experiments with other datasets (not shown here) that the throughput
is constant, i.e. independent on the number of XPath expressions. By contrast,
the throughput of XFilter decreased linearly with the number of XPath expres-
sions. The lazy DFA is about 50 times faster than XFilter on the smallest dataset,
and about 10,000 times faster than XFilter on the largest dataset. Figure 10 (b)
and (c) show the throughput as a function of the probability of ∗, and of the
probability of // respectively.

The first 5MB-10MB of data in Fig. 10 represent the warm-up phase, when
most of the states in the lazy DFA are constructed. The length of the warm-up
phase depends on the size of the lazy DFA that is eventually generated. For
the data in our experiments, the lazy DFA had the same number of states for
1k, 10k, 100k, and 1000k (91, 95, 95, and 95 respectively). However, the size
of the NFA tables grows linearly with the number of XPath expressions, which
explains the longer tail: even if few states remain to be constructed, they slow
down processing. In our throughput experiments with other datasets we observed
that the lengths of the warm-up phase is correlated to the number of states in
the lazy DFA.

6 Implementation Issues

Implementing the NFA tables In the lazy DFA we need to keep the set
of NFA states at each DFA state: we call this set an NFA table. As shown in
Prop. 2 the size of an NFA table is linear in the number of XPath expressions p,
and about p/10 in our experiments. Constructing and manipulating these tables
during the warm-up phase is a significant overhead, both in space and in time.

14

Throughput�for�1k,�10k,�100k,�1000k�XPEs�
[�prob(*)=10%,�prob(//)=10%�]

0.0001

0.001

0.01

0.1

1

10

100

5MB 10MB 15MB 20MB 25MB

Total�input�size

parser
lazyDFA(1k)
lazyDFA(10k)
lazyDFA(100k)
lazyDFA(1000k)
xfilter(1k)
xfilter(10k)
xfilter(100k)
xfilter(1000k)

Throughput�for�prob(*)�=�0.1%,�1.0%,�10.0%,�50.0%�
[100k�XPEs,�prob(//)�=�10%]

0.001

0.01

0.1

1

10

100

5MB 10MB 15MB 20MB 25MB

Total�input�size

parser
lazyDFA(0.1%)
lazyDFA(1.0%)
lazyDFA(10.0%)
lazyDFA(50.0%)
xfilter(0.1%)
xfilter(1.0%)
xfilter(10.0%)
xfilter(50.0%)

Throughput�for�prob(//)�=�0.1%,�1.0%,�10.0%,�50.0%��
[100k�XPEs,�prob(*)�=�10%]

0.001

0.01

0.1

1

10

100

5MB 10MB 15MB 20MB 25MB

Total�input�size

parser
lazyDFA(0.1%)
lazyDFA(1.0%)
lazyDFA(10.0%)
lazyDFA(50.0%)
xfilter(0.1%)
xfilter(1.0%)
xfilter(10.0%)
xfilter(50.0%)

Fig. 10. Experiments illustrating the throughput of the DFA v.s. XFilter [3], as a func-
tion of the amount of XML data consumed. (left) varying number of XPath expressions
(1k = 1000). (middle) varying probability of ∗. (right) varying probability of //.

We considered many alternative implementations for the NFA tables. There are
three operations done on these sets: create, insert, and compare. For example
a complex data set might have 10,000 DFA states, each containing a table of
30,000 NFA states and 50 transitions. Then, during warm-up phase we need to
create 50 × 10, 000 = 500, 000 new sets; insert 30, 000 NFA states in each set;
and compare, on average, 500, 000×10, 000/2 pairs of sets, of which only 490,000
comparisons return true, the others return false. We found that implementing
sets as sorted arrays of pointers offered the best overall performance. An insertion
takes O(1) time, because we insert at the end, and sort the array when we
finish all insertions. We compute a hash value (signature) for each array, thus
comparisons with negative answers take O(1) in virtually all cases.

Optimizing space To save space, it is possible to delete some of the sets of
NFA tables, and recompute them if needed: this may slow down the warm-up
phase, but will not affect the stable state. It suffices to maintain in each DFA
state a pointer to its predecessor state (from which it was generated). When the
NFA table is needed, but has been deleted (a miss), we re-compute it from the
predecessor’s set; if that is not available, then we go to its predecessor, eventually
reaching the initial DFA state for which we always keep the NFA table.

Updates Both online and offline updates to the set of XPath expressions
are possible. In the online update, when a new XPath expression is inserted we
construct its NFA, then create a new lazy DFA for the union of this NFA and the
old lazy DFA. The new lazy DFA is very efficient to build (i.e. its warm-up is fast)
because it only combines two automata, of which one is deterministic and the
other is very small. When another XPath expression is inserted, then we create
a new lazy DFA. This results in a hierarchy of lazy DFAs, each constructed from
one NFA and another lazy DFA. A state expansion at the top of the hierarchy
may cascade a sequence of expansions throughout the hierarchy. Online deletions
are implemented as invalidations: reclaiming the memory used by the deleted
XPath expressions requires garbage-collection or reference count. Offline updates
can be done by a separate (offline) system, different from the production system.
Copy the current lazy DFA, Al, on the offline system, and also copy there the new
query tree, P , reflecting all updates (insertions, deletions, etc). Then construct

15

the eager DFA, Ad, for P , but only expand states that have a corresponding
state in Al, by maintaining a one-to-one correspondence from Ad to Al and only
expanding a state when this correspondence can be extended to the new state.
When completed, Ad is moved to the online system and processing resumes
normally. The idea is that Ad will be no larger than Al and, if there are only
few updates, then Ad will be approximately the same as Al, meaning that the
warm-up cost for Ad is minimal.

7 Related Work

Two techniques for processing XPath expressions have been proposed. XFil-
ter [3], its successor YFilter [9] and XTrie [6] evaluate large numbers of XPath
expressions with what is essentially a highly optimized NFA. There is a space
guarantee which is proportional to the total size of all XPath expressions. An
optimization in XFilter, called list balancing can improve the throughput by
factors of 2 to 4. XTrie identifies common strings in the XPath expressions and
organizes them in a Trie. At run-time an additional data structure is maintained
in order to keep track of the interaction between the substrings. The throughput
in XTrie is about 2 to 4 times higher than that in XFilter with list balancing.

In [20] the authors describe a technique for event detection. Events are sets
of atomic events, and they trigger queries defined by other sets of events. The
technique here is also a variation on the Trie data structure. This is an efficient
event detection method that can be combined with lazy DFAs in order to process
XPath expressions with filters.

Reference [15] describes a general-purpose XML query processor that, at
the lowest level, uses an event based processing model, and show how such a
model can be integrated with a highly optimized XML query processor. We were
influenced by [15] in designing our stream processing model. Query processors
like [15] can benefit from an efficient low-level stream processor. Specializing
regular expressions w.r.t. schemes is described in [10, 18].

8 Conclusion

The challenge in fast XML stream processing with DFAs is that memory require-
ments have exponential bounds in the worst case. We proved useful theoretical
bounds and validated them experimentally, showing that memory usage is man-
ageable for lazy DFAs. We also validated lazy DFAs on stream XML data and
found that they outperform previous techniques by factors of up to 10,000.
Acknowledgment We thank Peter Buneman, AnHai Doan, Ashish Gupta,
Zack Ives, and Arnaud Sahuguet for their comments on earlier versions of this
paper. Suciu was partially supported by the NSF CAREER Grant 0092955, a
gift from Microsoft, and an Alfred P. Sloan Research Fellowship.

16

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web : From Relations to
Semistructured Data and XML. Morgan Kaufmann, 1999.

2. A. Aho and M. Corasick. Efficient string matching: an aid to bibliographic search.
Communications of the ACM, 18:333–340, 1975.

3. M. Altinel and M. Franklin. Efficient filtering of XML documents for selective
dissemination. In Proceedings of VLDB, pages 53–64, Cairo, Egipt, September
2000.

4. I. Avila-Campillo, T. J. Green, A. Gupta, M. Onizuka, D. Raven, and D. Suciu.
XMLTK: An XML toolkit for scalable XML stream processing. In Proceedings of
PLANX, October 2002.

5. P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure to un-
structured data. In Proceedings of the International Conference on Database The-
ory, pages 336–350, Deplhi, Greece, 1997. Springer Verlag.

6. C. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient filtering of XML
documents with XPath expressions. In Proceedings of the International Conference
on Data Engineering, 2002.

7. J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: a scalable continuous
query system for internet databases. In Proceedings of the ACM/SIGMOD Con-
ference on Management of Data, pages 379–390, 2000.

8. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

9. Y. Diao, P. Fischer, M. Franklin, and R. To. Yfilter: Efficient and scalable fil-
tering of xml documents. In Proceedings of the International Conference on Data
Engineering, San Jose, California, February 2002.

10. M. Fernandez and D. Suciu. Optimizing regular path expressions using graph
schemas. In Proceedings of the International Conference on Data Engineering,
pages 14–23, 1998.

11. R. Goldman and J. Widom. DataGuides: enabling query formulation and opti-
mization in semistructured databases. In Proceedings of Very Large Data Bases,
pages 436–445, September 1997.

12. T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing xml streams with
deterministic automata. Technical Report 02-10-03, University of Washington,
2002. Available from www.cs.washington.edu/homes/suciu.

13. D. G. Higgins, R. Fuchs, P. J. Stoehr, and G. N. Cameron. The EMBL data library.
Nucleic Acids Research, 20:2071–2074, 1992.

14. J. Hopcroft and J. Ullman. Introduction to automata theory, languages, and com-
putation. Addison-Wesley, 1979.

15. Z. Ives, A. Halevy, and D. Weld. An XML query engine for network-bound data.
Unpublished, 2001.

16. H. Liefke and D. Suciu. XMill: an efficent compressor for XML data. In Proceedings
of SIGMOD, pages 153–164, Dallas, TX, 2000.

17. M. Marcus, B. Santorini, and M.A.Marcinkiewicz. Building a large annotated
corpus of English: the Penn Treenbak. Computational Linguistics, 19, 1993.

18. J. McHugh and J. Widom. Query optimization for XML. In Proceedings of VLDB,
pages 315–326, Edinburgh, UK, September 1999.

19. NASA’s astronomical data center. ADC XML resource page.
http://xml.gsfc.nasa.gov/.

17

20. B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Monitoring XML data on the
web. In Proceedings of the ACM SIGMOD Conference on Management of Data,
pages 437–448, Santa Barbara, 2001.

21. D. Olteanu, T. Kiesling, and F. Bry. An evaluation of regular path expressions
with qualifiers against XML streams. In Proc. the International Conference on
Data Engineering, 2003.

22. G. Rozenberg and A. Salomaa. Handbook of Formal Languages. Springer Verlag,
1997.

23. A. Sahuguet. Everything you ever wanted to know about dtds, but were afraid to
ask. In D. Suciu and G. Vossen, editors, Proceedings of WebDB, pages 171–183.
Sringer Verlag, 2000.

24. A. Snoeren, K. Conley, and D. Gifford. Mesh-based content routing using XML.
In Proceedings of the 18th Symposium on Operating Systems Principles, 2001.

25. J. Thierry-Mieg and R. Durbin. Syntactic Definitions for the ACEDB Data Base
Manager. Technical Report MRC-LMB xx.92, MRC Laboratory for Molecular
Biology, Cambridge,CB2 2QH, UK, 1992.

