Integrating WordNet into the Database
- Project for CSE 544 -

Joe Xavier joe@cs.washington.edu
Problem Definition:

Databases can only answer exact query. The conditions in the where clause have to evaluate to true to return results. For equality searches for strings this happens only when the string in the column exactly matches the term searched for.

This leads to an interesting problem – is it possible to return results when there are terms in the column which are “related” to the term being searched for? For example, when a user searches for car, it should be possible to return results if the database contains automobile, auto etc. The words can be “related” in many different ways – they could be synonyms or antonyms etc.
Some terms are more closely “related” to the search term than others – so it should be possible to associate a score with each result and then return results in ranked order.

Simply put; the query:

SELECT name, price

FROM products

WHERE name = ‘coral'AND color = ‘green'

Should produce the result:

[image: image1]
Overview of WordNet:

WordNet [WordNet] is a lexical reference system for the English Language developed in the Cognitive Sciences Lab at Princeton. English nouns, verbs, adjectives and adverbs organized into synonym sets in WordNet.

It can also be thought of as a IS-A taxonomy i.e. can be used to come up with answers along the lines of: a nickel IS-A coin, a dime IS-A coin. WordNet supports determining different relationships between words like synonyms, antonyms etc.

Bringing the two together:

What we need to do is query expansion. Given a search term we need to find related terms and search for those related terms. We also need to associate some scores with each result to return results in ranked order.
WordNet is can easily be used to solve the problem of query expansion and provide related terms for each search term.

Relations Considered:

My code allows specifying what relation you want to use for the query expansion.

The relations I support are:

· SYNS - synonyms: synsets with similar meaning

· HYPERPTR - hypernyms: The generic term used to designate a whole class of specific instances. Y is a hypernym of X if X is a (kind of) Y

· HYPOPTR - hyponyms: The specific term used to designate a member of a class. X is a hyponym of Y if X is a (kind of) Y

· HOLONYM - holonym: The name of the whole of which the meronym names a part. Y is a holonym of X if X is a part of Y

· MERONYM - meronym: The name of a constituent part of, the substance of, or a member of something. X is a meronym of Y if X is a part of Y

Resnik Score:

I chose a measure called the Resnik Measure [Res 1995]. It uses the information content of concepts, computed from their frequency of occurrence in a large corpus, to determine the semantic relatedness of word senses This measure is a good measure of semantic relatedness between terms in a IS-A taxonomy.
I computed the Resnik measure using the WordNet::Similarity [WN Sim] module developed by Tom Pederson.

Inside the database or outside?

WordNet is a client side application that can provide query expansion. However, there are some advantages in doing the term lookup inside the database.

So I compare three approaches for addressing this problem.

Perl Interface:

Using a Perl Interface to find related terms and associated scores. I use the Perl module WordNet::QueryData to retrieve related terms and WordNet::Similarity to compute the Resnik score (between the term and synonym. All the lookups (related terms, score) are done at run-time and this method turns out to be quite slow. I then re-write the query into a number of select statements with a number of UNIONS and submit it to the database.

A query of the form:
SELECT name, price, color

FROM products

WHERE name = 'cubbyhole'

Gets re-written into

SELECT name, price, color, 0 AS SCORE FROM products WHERE name = 'pigeonhole'

UNION

SELECT name,price,color,5.71022764623808 AS SCORE FROM products WHERE name = 'snuggery'

UNION

SELECT name,price,color,5.71022764623808 AS SCORE FROM products WHERE name = 'snug'

UNION

SELECT name,price,color,5.71022764623808 AS SCORE FROM products WHERE name = 'cubby'

ORDER BY SCORE DESC, price ASC
In-Memory Thesaurus:

I created my own client-side thesaurus that is loaded in-memory into hash tables. For every noun in WordNet I found a number of related terms (all synonyms, hyponyms, meronyms, holonyms, hypernym) and also the score for each of these terms.
So, in effect for each noun e.g. car I have a data structure along the lines of:

[image: image3.png]!
!

= s = ot seos [oo sco
e R o 5
2 edcad TSRS e o 5

	term
	syns
	hyponyms
	hypernym
	holonym
	meronym
	resnik_score

	auto
	1
	0
	0
	0
	1
	3.4453

	automobile
	1
	0
	0
	0
	1
	2.1253

	machine
	1
	0
	1
	0
	1
	3.4453

term is the related term. It has a 0 in the next 5 columns if it is related to the noun (car) in that relation. The last column is for the Resnik Score.

The code to process the noun.idx file (from WordNet) and produce the data files from which the hash tables are loaded takes about 3 hours to run. The size of the data files is about 31.4 MB. There are 107,677 nouns in all i.e. that many entries in the hash tables. I load them into 6 hash tables – 20000 nouns in each. I just partition them in lexical order so I know which hash table to look up.
The query re-write is exactly the same as described in the previous section.
Database Thesaurus:

I created a 980,000 row thesaurus table in the database. The user query is rewritten using the thesaurus The query doesn't use any joins.
The data files are a small variation of the files generated above (takes about 4 minutes for the additional processing). Size if 41.9 MB. The thesaurus has 970,109 rows of noun, term pairs. Uploading the data takes about 15 minutes.

The schema for the thesaurus table is:

[image: image2]
A query of the form:

SELECT name, price, color

FROM products

WHERE name = 'cubbyhole'

Gets re-written into

SELECT DISTINCT name,price,color, t.resnik_score as product_score

FROM products, thesaurus t

WHERE name =t.term AND t.noun='cubbyhole' AND t.SYNS = 1

ORDER BY t.resnik_score DESC

Comparison Summary:

· The Perl interface approach where everything is computed at run-time is very slow. Query rewrite time is same as for in-memory thesaurus but the overall time makes this the slowest approach by a few orders of magnitude.

· This works very well when the number of related terms for a search term is small. When the number of terms is larger then the performance becomes much worse than the database approach. Also, when the number of terms is large the query re-write time increases. The time to execute the query with the large number of joins is considerably higher.

· This is the best approach and seems to scale the best. Intuition says that this will be the best approach when there are joins etc and when the query is complex.
Comparison of Query times – broken into stages:

	SELECT name, price, color

FROM products

WHERE name = 'aeroplane'

	‘aeroplane’ has 2 synonyms

	Approach
	Stage
	times (ms)
	Total (ms)

	Perl Interface
	term lookup
	16553.803
	16603 ms

	
	query rewrite
	0
	

	
	query execution
	5007.2
	

	In-memory thesaurus
	loading hashtables
	42070.494
	42070.494

	
	term lookup
	0
	100.144

	
	query rewrite
	0
	

	
	query execution
	100.144
	

	Database thesaurus
	term lookup
	0
	20.028

	
	query rewrite
	0
	

	
	query execution
	20.028
	

	SELECT name, price, color

FROM products

WHERE name = ‘writer'

	‘writer’ has 46 synonyms

	Approach
	Stage
	times (ms)
	Total (ms)

	Perl Interface
	term lookup
	17224.768
	17585 ms

	
	query rewrite
	0
	

	
	query execution
	360.518
	

	In-memory thesaurus
	loading hashtables
	39056.160
	39056.160

	
	term lookup
	0
	330.475

	
	query rewrite
	0
	

	
	query execution
	330.475
	

	Database thesaurus
	term lookup
	0
	40.057

	
	query rewrite
	0
	

	
	query execution
	40.057
	

	SELECT name, price, color

FROM products

WHERE name = ‘herb'

	‘herb’ has 908 meronyms

	Approach
	Stage
	times (ms)
	Total (ms)

	In-memory thesaurus
	term lookup
	170.244
	15072

	
	query rewrite
	1402.016
	

	
	query execution
	13499.411
	

	Database thesaurus
	term lookup
	0
	160.230

	
	query rewrite
	0
	

	
	query execution
	160.230
	

	SELECT name, price, color

FROM products

WHERE name = ‘human'

	‘herb’ has 615 meronyms

	Approach
	Stage
	times (ms)
	Total (ms)

	In-memory thesaurus
	term lookup
	80.115
	6580

	
	query rewrite
	200.288
	

	
	query execution
	6299.057
	

	Database thesaurus
	term lookup
	0
	80

	
	query rewrite
	0
	

	
	query execution
	80.115
	

Extensions to the Database Approach:

I extended this approach a bit to support two conditions in the WHERE clause. I created another thesaurus like table for colors. For every color, I entered some other color which I considered similar and associated a score with it.

e.g.

green, 'light green', 5

green, 'dark green', 4

blue, 'navy blue', 5

blue, 'purple', 3

Similarly, associated with this color-thesaurus is a table-valued UDF color_thesaurus_function (that returns rows) - color, similar-color, score.

The premise is that a user looks for a product of a particular color. e.g a user looks for a "car with color green"

SELECT name, price, color

FROM products

WHERE name='car' and color='green'

gets rewritten into

SELECT name, price, color, T.score, C.score FROM

products,

thesaurus_function('car', 'synonym) T,

color_thesaurus_function('green', 'synonym') C WHERE products.name = T.term AND products.color = C.similar-color ORDER BY T.score DESC, C.score DESC

So the user might get results like

auto

23445
light green
3.4453
5

auto

12005
dark green
3.4453
4

automobile
23445
light green
3.4453
5

etc.

Combining Scores:

My belief is that combining scores should be left to the user. Each application will have different requirements for scoring and ranking and a database should provide the base infrastructure to enable a user to build their own mechanism for scoring/ranking. What I have built will allow a user to retrieve related terms and associated scores between the terms and then combine them in any way he sees fit.

In the query rewrite given just above I showed one way to combine the scores to rank the results. The user may decide that color is more important than product.name for example.

e.g. A realty application (as described in Automated Ranking of Database Query Results by Sanjay Aggrawal, Surajit Chaudhuri et al) allows users to search for houses in certain localities.

If I'm searching for "three bedroom houses in Redmond", and the database doesn't contain any "three bedroom houses in Redmond" then the database should rank "three bedroom houses in places very close to Redmond (e.g. Bellevue)" higher than "four bedroom houses in Redmond". But this should be left to the application developer. The database should provide the infrastructure to return two things (a) places near Redmond with associated scores (b) houses similar to the one being searched for (with associated scores) Combining these scores in a meningful manner hsould be left to the user since only the user knows what "meaningful" means for that specific application.

It is possible to provide some templates or packaged score-combining algorithms but I don't see too much practical utility in that.

References:

[WordNet] http://www.cogsci.princeton.edu/~wn/

[Res 1995] Philip Resnik, "Using Information Content to Evaluate Semantic Similarity in a Taxonomy“

[WN Sim] http://search.cpan.org/~tpederse/WordNet-Similarity-0.09/

car (

[image: image4.png]Schema for table thesaurus
1

s T v e e o o
J& Teamteed 8 o5 0 5 1 2RS0T
Jea cobizabs 0 o 0 o 1 aTama2sEEEBS

TJow akow T e o o s

