Optimizations Based on Semijoins

Semi-join based optimizations

• $R \bowtie S = \Pi_{A_1,\ldots,A_n} (R >> S)$
• Where the schemas are:
 – Input: $R(A_1,\ldots,A_n)$, $S(B_1,\ldots,B_m)$
 – Output: $T(A_1,\ldots,A_n)$

• Example:

 $Q \cdot R_1(A,B), R_2(B,C), R_3(C,D)$

 A full reducer is:

 $R_2(B,C) \Rightarrow R_2(B,C), R_1(A,B)$
 $R_3(C,D) \Rightarrow R_3(C,D), R_2(B,C)$
 $R_2(B,C) \Rightarrow R_2(B,C), R_3(C,D)$
 $R_1(A,B) \Rightarrow R_1(A,B), R_2(B,C)$

• Example:

 $Q \cdot R_1(A,B), R_2(B,C), R_3(A,C)$

 Doesn’t have a full reducer (we can reduce forever)

 Theorem a query has a full reducer iff it is “acyclic”
Optimizations Based on Semijoins

• Semijoins in [Chaudhuri’98]

CREATE VIEW DepAvgSal AS (
SELECT E.did, Avg(E.Sal) AS avgSal
FROM Emp E
GROUP BY E.did)
SELECT E.id, E.sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E.did = D.did AND E.did = V.did
AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgSal

Optimizations Based on Semijoins

• First idea:

CREATE VIEW LimitedAvgSal AS (
SELECT E.did, Avg(E.Sal) AS avgSal
FROM Emp E, Dept D
WHERE E.did = D.did AND D.budget > 100k
GROUP BY E.did)
SELECT E.id, E.sal
FROM Emp E, Dept D, LimitedAvgSal V
WHERE E.did = D.did AND E.did = V.did
AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgSal

Optimizations Based on Semijoins

• Better: full reducer

CREATE VIEW PartialResult AS
(SELECT E.id, E.sal, E.did
FROM Emp E, Dept D
WHERE E.did = D.did AND E.age < 30
AND D.budget > 100k)
CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult P)
CREATE VIEW LimitedAvgSal AS
(SELECT E.did, Avg(E.Sal) AS avgSal
FROM Emp E, Filter F
WHERE E.did = F.did GROUP BY E.did)

Optimizations Based on Semijoins

Modern Query Optimizers

• Volcano
 – Rewrite rules
 – Extensible

• Starburst
 – Keeps query blocks
 – Interblock, intrablock optimizations

Size Estimation

The problem: Given an expression E, compute T(E) and V(E, A)

• This is hard without computing E
• Will ‘estimate’ them instead
Size Estimation

Estimating the size of a projection

• Easy: $T(\Pi_A(R)) = T(R)$
• This is because a projection doesn’t eliminate duplicates

Size Estimation

Estimating the size of a selection

• $S = \sigma_{A < c}(R)$
 – $T(S)$ can be anything from 0 to $T(R) - V(R,A) + 1$
 – Estimate: $T(S) = T(R) / V(R,A)$
 – When $V(R,A)$ is not available, estimate $T(S) = T(R)/10$

• $S = \sigma_{A = c}(R)$
 – $T(S)$ can be anything from 0 to $T(R)$
 – Estimate: $T(S) = (c - Low(R,A)) / (High(R,A) - Low(R,A))$
 – When Low, High unavailable, estimate $T(S) = T(R)/3$

Size Estimation

Estimating the size of a natural join, $R \times_A S$

• When the set of A values are disjoint, then $T(R \times_A S) = 0$
• When A is a key in S and a foreign key in R, then $T(R \times_A S) = T(R)$
• When A has a unique value, the same in R and S, then $T(R \times_A S) = T(R) \cdot T(S)$

Size Estimation

Assumptions:

• Containment of values: if $V(R,A) \subseteq V(S,A)$, then the set of A values of R is included in the set of A values of S
 – Note: this indeed holds when A is a foreign key in R, and a key in S
• Preservation of values: for any other attribute B, $V(R \times_A S, B) = V(R, B)$ (or $V(S, B)$)

Size Estimation

Assume $V(R,A) \subseteq V(S,A)$

• Then each tuple t in R joins some tuple(s) in S
 – How many?
 – On average $T(S)/V(S,A)$
 – t will contribute $T(S)/V(S,A)$ tuples in $R \times_A S$
• Hence $T(R \times_A S) = T(R) \cdot T(S) / V(S,A)$

In general: $T(R \times_A S) = T(R) \cdot T(S) / \max(V(R,A), V(S,A))$

Size Estimation

Example:

• $T(R) = 10000$, $T(S) = 20000$
• $V(R,A) = 100$, $V(S,A) = 200$
• How large is $R \times_A S$?

Answer: $T(R \times_A S) = 10000 \cdot 20000/200 = 1M$
Size Estimation

Joins on more than one attribute:

\[T(R \mid_{A,B} S) = \frac{T(R)}{\max(V(R,A),V(S,A)) \times \max(V(R,B),V(S,B))} \]

Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Employee(ssn, name, salary, phone)

- Maintain a histogram on salary:

<table>
<thead>
<tr>
<th>Salary</th>
<th>0-20k</th>
<th>20k-40k</th>
<th>40k-60k</th>
<th>60k-80k</th>
<th>80k-100k</th>
<th>>100k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>200</td>
<td>500</td>
<td>2000</td>
<td>1000</td>
<td>500</td>
<td>50</td>
</tr>
</tbody>
</table>

 - \(T(Employee) = 25000 \), but now we know the distribution

Ranks(rankName, salary)

- Estimate the size of Employee \mid Salary Ranks

<table>
<thead>
<tr>
<th>Employee</th>
<th>0-20k</th>
<th>20k-40k</th>
<th>40k-60k</th>
<th>60k-80k</th>
<th>80k-100k</th>
<th>>100k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>200</td>
<td>500</td>
<td>2000</td>
<td>1000</td>
<td>500</td>
<td>50</td>
</tr>
</tbody>
</table>

Histograms

- Eqwidth
- Eqdepth

End of “Normal” Lectures

- What’s next?
- Two lectures on advanced topics:
 - Queries with uncertainties
 - Security issues in data sharing
- Projects presentations