Announcements

• Project Milestone
 – Due today

• Next paper: *On the Unusual Effectiveness of Logic in Computer Science*
 – Need to read only up to section 3
 – Review due on Wednesday
 – It’s very short; review should be similar :)

XML Storage

Shanmugasundaram’s paper:

• Shred XML data relations
 – Easy: use the DTD
• Translate XML queries SQL queries
 – Largely ignored in the paper
• Tagging
 – SQL tuple streams XML
 – How do we do that?

XML Storage

Other ways:

• Schema independent shredding
• BLOBs
• Use an object storage system

OO Databases

• Started late 80’s
 – The OO Manifesto
• Main idea:
 – Toss the relational model!
 – Use the OO model – e.g. C++ classes

OO Databases

Two interpretations:

• Make a programming language persistent (ObjectStore)
 – No query language
 – Niche market
 – ObjectStore is still around, renamed to Exelon, stores XML objects now
• Build a new database from scratch (O₂)
 – Elegant extension of SQL
 – Later adopted by ODMG in the OQL language
ODL / OQL

interface Person
 (extent People key ssn)
 { attribute string ssn;
 attribute string dept;
 attribute string name; }

interface Course
 (extent Crs key cid)
 { attribute string cid;
 attribute string cname;
 relationship Person instructor; relationship Set<Student> stds inverse takes; }

interface Student extends Person
 (extent Students)
 { attribute string major;
 relationship Set<Course> takes inverse stds; }

Same in E/R

Object-Relational (OR) Databases

- Take an incremental approach
- Keep the relational model, but allow attributes of complex types
 - Inheritance
 - Pointers
 - Methods (a security nightmare)
- All major commercial databases today are OR
- Trend: XML datatype

Theory

- Recall: relational databases invented by a theoretician (Codd)
- Fundamental principle: separate the WHAT from the HOW - data independence
- WHAT: First Order Logic (FO)
- HOW: Relational algebra (RA)

FO Syntax

Given:
- A vocabulary: R_1, \ldots, R_k
- An arity, $ar(R_i)$, for each $i=1,\ldots,k$
- An infinite supply of variables x_1, x_2, x_3, \ldots
- Constants: c_1, c_2, c_3, \ldots
FO Syntax

- Terms (t) and FO formulas (ϕ) are:

 \[
 t ::= x \mid c \\
 ϕ ::= R(t_1, ..., t_a) \mid t_i = t_j \\
 \mid ϕ \land ϕ' \mid ϕ \lor ϕ' \mid ¬ϕ \\
 \mid ∀x.ϕ \mid ∃x.ϕ
 \]

FO Examples

Most interesting case:
Vocabulary = one binary relation R (encodes a graph)

FO Sentences

- Does there exist a loop in the graph?
 \[
 ϕ ≡ ∃x.R(x,x)
 \]

- Are there paths of length >2?
 \[
 ϕ ≡ ∃x.∃y.∃z.(R(x,y) \land R(y,z) \land R(z,x))
 \]

- Is there a "sink" node?
 \[
 ϕ ≡ ∃x.∀y.R(x,y)
 \]

FO Queries

- Find all nodes connected by a path of length 2:
 \[
 ϕ(x,y) ≡ ∃u.(R(x,u) \land R(u,y))
 \]

- Find all nodes without outgoing edges:
 \[
 ϕ(x) ≡ ∃u.(R(u,x) \land ∀y.¬R(x,y))
 \]

These are open formulas

In Class

- Retrieve all nodes with at least two children

- A node x is more important than y if every child of y is also a child of x. Retrieve all ‘most important nodes’ in the graph

FO in Databases

<table>
<thead>
<tr>
<th>FO</th>
<th>Databases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocabulary: R₁, ..., Rₙ</td>
<td>Database schema: R₁, ..., Rₙ</td>
</tr>
<tr>
<td>Model: D = (D, R₁, ..., Rₙ)</td>
<td>Database instance: D = (D, R₁, ..., Rₙ)</td>
</tr>
<tr>
<td>Sentences are true or false</td>
<td>Formulas compute queries</td>
</tr>
</tbody>
</table>
FO Semantics

- In FO we express WHAT we want
- Sometimes it’s even unclear HOW to get it
- See accompanying slides on FO semantics – They explain HOW to get it, but it’s impractical

Relational Algebra

- An algebra over relations
- Five operators: \(\cup, -, \times, \sigma, \Pi \)
- Meaning:
 - \(R_1 \cup R_2 = \text{set union} \)
 - \(R_1 - R_2 = \text{set difference} \)
 - \(R_1 \times R_2 = \text{cartesian product} \)
 - \(\sigma_c(R) = \text{subset of tuples satisfying condition } c \)
 - \(\Pi_a(R) = \text{projection on the attributes in } a \)

FO \rightarrow RA

\[
q(x) = R(x,x) \quad \rightarrow \quad \Pi_1(\sigma_1(R))
\]

\[
q(x,y) = \exists a \exists b (R(x,a) \land R(y,b)) \quad \rightarrow \quad \Pi_{16}(\sigma_{2,3} \land \sigma_{1,4} (R \times R)) \land \Pi_{16} (R \text{ join } 1 = 2 \text{ join } 4 = 1 R)
\]

\[
q(x) \equiv \forall y R(x,y) \quad \rightarrow \quad \text{WHAT} \quad \rightarrow \quad \text{HOW}
\]

The Drinkers/Beers Example

- Vocabulary:
 - Likes(drinker, beer), Serves(bar, beer), Frequents(drinker, bar)
- Find all drinkers that frequent some bar that serve some beer that they like:
 \[
 q(d) = \exists b \exists c (F(d, ba) \land L(d, be))
 \]

FO v.s. RA

Theorem. Every query in RA can be expressed in FO

Proof

This shows how to go from HOW to WHAT not very interesting

What about the converse?

Lots of Fun Examples (in class)

- Find drinkers that frequent some bar that serves only beer they like
- Find drinkers that frequent only bars that serve some beer they like
- Find drinkers that frequent only bars that serve only beer they like
Unsafe FO Queries

• Find all nodes that are not in the graph:

\[q(x) = \neg \exists y.R(x, y) \land \neg \exists z.R(z, x) \]

what’s wrong ?

Unsafe FO Queries

• Find all nodes that are connected to “everything”:

\[q(x) = \forall y.R(x, y) \]

what’s wrong ?

Unsafe FO Queries

• Find all pairs of employees or offices:

\[q(x, y) = \text{Emp}(x) \lor \text{Office}(y) \]

what’s wrong ?

• We don’t want such queries !

Safe Queries

A model \(D = (D, R_1^D, \ldots, R_k^D) \)

• In FO:
 – both \(D \) and \(R_1^D, \ldots, R_k^D \) may be infinite

• In databases:
 – \(D \) may infinite (int, string, etc)
 – \(R_1^D, \ldots, R_k^D \) are always finite
 – We call this a finite model

Safe Queries

• \(\varphi \) is a finite query if for every finite model \(D \), \(\varphi(D) \) is finite

• \(\varphi \) is safe, or domain independent, if for every two models \(D, D' \) having the same relations:

\[D = (D, R_1^D, \ldots, R_k^D), \quad D' = (D', R_1^{D'}, \ldots, R_k^{D'}) \]

we have \(\varphi(D) = \varphi(D') \)

• If \(\varphi \) is safe then it is also finite (why ?)

• Note: book has different but equivalent definition

Safe Queries

• Definition. Given \(D = (D, R_1^D, \ldots, R_k^D) \), the active domain

is \(\text{D}_a = \{ x \mid \exists y.R(x, y) \lor \exists z.R(z, x) \} \)

• Example. Given a graph \(D = (D, R) \)

\(\text{D}_a = \{ x \mid \exists y.R(x, y) \lor \exists z.R(z, x) \} \)

• Property. If a query is safe, it suffices to range quantifiers

only over the active domain (why ?)

• Hence we can compute safe queries
Safe Queries

- The **safe relational calculus** consists only of safe queries. However:
- **Theorem** It is undecidable if a given FO query is safe.
- Need to write only safe queries, but how do we know how which queries are safe?
- Work around: write them in an obviously safe way
 - Range restricted queries - formally defined in [AHU]

FO v.s. RA

Theorem. Every safe query in FO can be expressed in RA

Proof

From WHAT to HOW

this is really interesting and motivated the relational model

Limited Expressive Power

- Vocabulary: binary relation R
- The following queries cannot be expressed in FO:

- Transitive closure:
 - $\forall x, y. \text{there exists } s_1, \ldots, s_k \text{ s.t.}$
 - $R(x, s_1) \land R(s_1, s_2) \land \ldots \land R(s_{n-1}, s_n) \land R(s_n, y)$

- Parity: the number of edges in R is even