
XRel: A Path-Based Approach to Storage
and Retrieval of XML Documents Using
Relational Databases

MASATOSHI YOSHIKAWA and TOSHIYUKI AMAGASA
Nara Institute of Science and Technology
TAKEYUKI SHIMURA
IBM Japan, Ltd.
and
SHUNSUKE UEMURA
Nara Institute of Science and Technology

This article describes XRel, a novel approach for storage and retrieval of XML documents
using relational databases. In this approach, an XML document is decomposed into nodes on
the basis of its tree structure and stored in relational tables according to the node type, with
path information from the root to each node. XRel enables us to store XML documents using a
fixed relational schema without any information about DTDs and also to utilize indices such
as the B1-tree and the R-tree supported by database management systems. Thus, XRel does
not need any extension of relational databases for storing XML documents. For processing
XML queries, we present an algorithm for translating a core subset of XPath expressions into
SQL queries. Finally, we demonstrate the effectiveness of this approach through several
experiments using actual XML documents.

Categories and Subject Descriptors: I.7.1 [Document and Text Processing]: Document and
Text Editing—Document management; I.7.2 [Document and Text Processing]: Document
Preparation—Markup languages; XML; H.2.1 [Database Management]: Logical Design—
Schema and subschema; H.3.6 [Information Storage and Retrieval]: Library Automation—
Large text archives

This work was partially supported by the Ministry of Education, Culture, Sports, Science and
Technology, Japan, under grants 11480088, 12680417, 12208032, and by the CREST of JST
(Japan Science and Technology).
An earlier version of this paper appeared in the Proceedings of the Tenth International
Conference on Database and Expert Systems Applications, Aug. 30–Sep. 3, 1999 (DEXA’99),
pp. 206–217.
Authors’ addresses: M. Yoshikawa and T. Amagasa, Graduate School of Information Science,
Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan;
email: yosikawa@is.aist-nara.ac.jp; amagasa@is.aist-nara.ac.jp; T. Shimura, IBM Japan, Ltd.,
1623-14, Shimotsuruma, Yamato, Kanagawa, 242-8502, Japan; email: takeyus@jp.ibm.com; S.
Uemura, Graduate School of Information Science, Nara Institute of Science and Technology,
8916-5 Takayama, Ikoma, Nara, 630-0101, Japan; email: uemura@is.aist-nara.ac.jp.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2001 ACM 1533-5399/01/0800–0110 $5.00

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001, Pages 110–141.

General Terms: Algorithms, Design, Management, Performance

Additional Key Words and Phrases: text markup, text tagging, XML query, XPath

1. INTRODUCTION
XML (Extensible Markup Language) [World Wide Web Consortium 1998] is
emerging as a standard format for data and documents on the Internet.
Various kinds of applications that use the XML format have been developed
(see XML Cover Pages ,http://xml.coverpages.org.). As a result, many
kinds of data will be exchanged in the form of XML documents or XML
data. It is expected that not only organizations but also individuals will use
large quantities of XML documents in the near future. Developing tech-
niques for storing massive XML documents and retrieving information
from them is one of the core problems at the point of contact for research in
the database area and XML.

In this article we describe XRel, a novel approach to building XML
databases on top of off-the-shelf relational databases. The design goals of
XRel are as follows: (1) no restriction should be imposed on the XML
documents being stored; any valid or well-formed XML documents should
be stored and queried; (2) XML queries should be based on W3C standard-
ization activities; (3) storage and manipulation of XML documents should
be made possible using currently available relational databases; no exten-
sion of data model, query expressive power, or index structures of rela-
tional database systems should be assumed; and (4) query processing
should be efficient.

One of the important features of XML documents is that we can perform
operations based on their logical structures. Hence, databases that manage
XML documents have to support queries on their logical structures and
contents. Since access is based on logical structure, it is appropriate to
decompose and store XML documents according to their tree structures,
which are then stored in databases. In order to retrieve XML documents
from such databases, XML queries are translated into database queries
(typically in SQL).

There are two approaches to designing database schemas for XML
documents, as follows.

Structure-mapping approach: Database schemas represent the logical
structure (or DTDs if they are available) of target XML documents. In a
basic design method, a relation or class is created for each element type
in the XML documents (e.g., Christophides et al. [1994]; Abiteboul et al.
[1997]). A more sophisticated mapping method has also been proposed,
whereby database schemas are designed based on detailed analysis of
DTDs [Shanmugasundaram et al. 1999]. In the structure-mapping ap-
proach, a database schema is defined for each XML document structure
or DTD.

XRel: A Path-Based Approach • 111

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

Model-mapping approach: Database schemas represent constructs of the
XML document model. In this approach, a fixed database schema is used
to store the structure of all XML documents. Early proposals of this
approach include Zhang [1995]. Another example includes the “edge
approach” [Florescu and Kossmann 1999b], in which edges in XML
document trees are stored as relational tuples.

In this article we adopt the model-mapping approach for the following
two reasons:

—The data structure of XML documents has richer expressive power than
the relational data model or object-oriented data model; more concretely,
neither the relational data model nor the object-oriented data model has
constructs to express the order or choice (‘?’) of elements in the element
content models in DTDs. This implies that we cannot find a method of
structure mapping that maps data structures of XML documents into
database schemas in a natural way. To cope with this problem, we need
to extend the expressive power of database models [Christophides et al.
1994 ; Abiteboul et al. 1997]. However, storage schemes assuming ex-
tended database models are not applicable to off-the-shelf database
systems.

—The structure-mapping approach is suitable when we store a large
number of XML documents that conform to a limited number of docu-
ment structures or DTDs, and when the document structures or DTDs
are static. However, numerous sophisticated Web applications are based
on the flexible and dynamic usage of XML. In such applications, there is
a demand to store various kinds of XML documents: (i) those whose
DTDs are not known beforehand, or (ii) those that are well-formed but do
not have DTDs. Further, many such applications deal with XML docu-
ments whose logical structure changes often. Obviously, the structure-
mapping approach is inappropriate for storing a large number of such
dynamic and structurally-variant XML documents.

In both of the approaches to database schema design above, XML
documents are decomposed into fragments composed of logical units. Obvi-
ously, these decomposition approaches have drawbacks—it takes time to
restore the entire or a large subportion of the original XML documents, and
processing certain text operations such as a proximity search beyond the
boundaries of elements becomes very complex. A simple alternative ap-
proach to overcome these problems is to store the entire text of XML
documents in a single database attribute as a CLOB (Character Large
OBject), or as files outside database systems. In our system, we optionally
keep the entire text of XML documents as well as their fragments stored in
database schemas. The decision whether to keep entire XML documents
depends on the demands of the application that will be used. The entire
text of each XML document in our system is stored as CLOB data if CLOB
is supported in the database system, and is stored as text files otherwise.

112 • M. Yoshikawa et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

There are other important design choices as well: e.g., which database
models should we use for the XML document databases—the (object)
relational database model or object-oriented database? We chose the (ob-
ject) relational database for the following two reasons:

—Current use of (object) relational databases is widespread [Leavitt 2000].
Consequently, large quantities of non-XML data have already been
stored in them. In order to work in closer cooperation with such tradi-
tional data, it is useful to store XML data in the same kind of databases.

—Query optimization techniques and the processing mechanisms in rela-
tional databases have been studied for a quarter of a century, and have
reached full growth. Thus, it is pragmatic to be able to cope with them.

Many query languages for XML documents had already been proposed
[Fernandez and Siméon 1999; Bonifati and Ceri 2000]. Among others, XQL
[Robie et al. 1999; Robie 1999] and XML-QL [Deutsch et al. 1998; 1999] are
important, in that detailed language specifications are defined for these
languages. Quilt [Robie et al. 2000; Chamberlin et al. 2000] is another
notable language that integrates the features of many other languages
including XQL and XML-QL. Although it was not designed as a full-fledged
query language, XPath [World Wide Web Consortium 1999] is a language
for addressing parts of an XML document. Standardization of XML query
facilities is ongoing at the W3C [World Wide Web Consortium 2001]. In our
research, we have adopted XPath as a query language for the following
reasons: (i) XPath is a W3C Recommendation and (ii) the functionality of
XPath is covered by the expressive power of many query languages pro-
posed thus far, and is mandatory for the future standard query language
[World Wide Web Consortium 2000b]. To provide an XML query interface of
databases, we need to develop algorithms translating XML queries into
database queries (in SQL or OQL).

The data structure of XML documents is modeled by a tree [World Wide
Web Consortium 2000a]. If we design a relational schema on the basis of a
model-mapping approach, one of the main problems is how to map basic
constructs in the tree model to a (object) relational schema. Several
approaches have been proposed thus far. For example, one approach is to
store edges, as suggested in Florescu and Kossmann [1999b], the other is to
store nodes. In Zhang [1995], all text nodes in SGML documents are
managed with a NODEclass. One of the essential differences between our
proposal and previous research is that we represent the XML tree structure
in terms of a combination of path and region. More precisely, we enumerate
available paths from the root to each node in the tree structure of an XML
document, and store the path expressions themselves in a relational
attribute. We represent the tree structure by combining those pieces of
information with information on region. In general, queries on XML docu-
ments frequently contain path expressions. Our approach has a clear
advantage in processing such queries—that is, we can process them in
terms of string matches because every possible path expression is stored in

XRel: A Path-Based Approach • 113

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

the databases as a string. This feature gives the following quantitative and
qualitative advantages:

(1) Our approach has a quantitative advantage in that most of the other
approaches, including those of Shanmugasundaram et al. [1999]; Flo-
rescu and Kossmann [1999b; 1999a], require join operations in propor-
tion to the length of the paths to process them. If a path expression
contains //, the number of join operations becomes as long as the length
of the longest path matching the path expression in the document tree.
Our approach performs the same processing using string matches.
Hence, we can reduce the number of join operations and achieve
efficient query processing.

(2) Our approach has a qualitative advantage in that most other ap-
proaches, such as those of Shanmugasundaram et al. [1999]; Florescu
and Kossmann [1999b; 1999a], require the recursive queries in the
database query languages, while XRel does not require recursive que-
ries, and can perform the same function within the SQL-92 standard.

In addition, this article makes the following contributions:

(1) XRel does not require any special indexing structures, and can utilize
conventional indexing structures such as the B1-tree and the R-tree,
provided by database systems.

(2) We give an algorithm to transform XPath expressions into SQL queries.
To the best of our knowledge, no previous study has provided a
complete algorithm for translating query expressions that conform to
an XML standard into SQL queries. In addition, some techniques
categorized as structure-mapping approaches need to develop algo-
rithms that translate XML queries into database queries for different
XML document structures or DTDs. In such cases, query translation
itself becomes difficult. Such algorithms are not viable in the approach
[Shanmugasundaram et al. 1999]. By contrast, our database schema is
simple and uniform, and hence our translation algorithm is also inde-
pendent of document structures.

(3) Finally, we show the advantages of our approach through some experi-
ments using actual XML documents.

The rest of this article is organized as follows. Section 3 briefly overviews
XML documents. Section 4 describes how to store XML documents using
relational databases in XRel. Section 5 shows the retrieval of XML docu-
ments. Implementation and evaluation of XRel are described in Section 6.
Section 7 concludes this paper and discusses future work.

2. RELATED WORK

Because SGML (Standard Generalized Markup Language) [ISO 1986] was
a predecessor of XML, there were several studies on the management of
structured documents even before XML emerged [Baeza-Yates and Navarro

114 • M. Yoshikawa et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

1996; Sacks-Davis et al. 1994]. Here, we show related work concerning
storage and indexing methods for structured documents.

2.1 Storing Structured Documents in Databases

In this section we describe some methods for storing structured documents
in databases. These methods can roughly be classified into two categories: a
database schema designed for documents with DTD information and stor-
age of documents without any information about DTDs. The latter ap-
proaches are capable of storing well-formed XML documents that do not
have DTDs. For both approaches, queries on XML documents are converted
into database queries before processing.

2.1.1 Designing Database Schemas Based on DTDs. First, there are
simple methods that basically design relational schemas or object database
classes corresponding to every element declaration in a DTD; e.g., see
Christophides et al. [1994]; Abiteboul et al. [1997]. Other approaches
design relational schemas by analyzing DTDs more precisely.

Shanmugasundaram et al. [1999] proposed an approach to analyze DTD
and automatically convert it into relational schemas. In this approach, a
DTD is simplified by discarding the information on the order of occurrence
among elements. Thus, the simplified DTD preserves only the semantics of
child elements concerned with whether the element (a) can occur only once
or more times and (b) is mandatory or not. The graph based on the
simplified information is called a DTD graph. In order to transform a DTD
graph into relational schemas, two techniques, called Shared and Hybrid,
were proposed. In the Shared technique, relations are created for all
elements in the DTD graph the nodes of which have an in-degree greater
than one. Nodes with an in-degree of one are inlined in the parent node’s
relation. For each element node with an in-degree of zero, a separate
relation is created because they are not reachable from any other node. In
the DTD graph, edges marked with ‘*’ indicate that the element of a
destination node can occur more than once. For each such element, a
separate relation is created because relational databases cannot store set
values as they are. Finally, element nodes, which appear along with the
directed paths from the element in the DTD graph that creates the
relational schema ~R!, are also inlined as an attribute in the relational
schema R. However, the directed paths must not contain ‘*’. In the Hybrid
technique, elements with in-degrees greater than 2 are also inlined if they
are reachable without passing ‘*’. Incidentally, order information among
elements that is discarded in the first step can be represented by adding
positional information in the relational schema.

2.1.2 Storing Structured Documents Without Information about DTD.
There have been several studies that used fixed relational schemas to store
structured documents. For example, Horowits and Williamson [1986] pro-
posed storing structured documents (ordered trees) by decomposing them
into relational tables. Also, in a study by Zhang [1995], a method to manage

XRel: A Path-Based Approach • 115

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

SGML documents using object-oriented database systems was proposed. In
that work, all text nodes were maintained by a class NODE. In addition,
Florescu and Kossmann [1999b; 1999a] proposed several relational sche-
mas and analyzed their performance. The method proposed in this article
differs from previous ones in that information about paths from the root to
each node and its position in the document is maintained in relational
tables. In addition, our proposal does not impose any prerequisites on the
XML documents to be stored, whereas Florescu and Kossmann [1999b;
1999a] assume that each element has an ID attribute.

2.2 Other Approaches

Several studies such as PAT [Salminen and Tompa 1994]; Burkowski
[1992]; Clarke et al. [1995a; 1995b] and Navarro and Baeza-Yates [1997] on
index files for structured documents have appeared. Sacks-Davis et al.
[1998] categorized such indexes into position- and path-based indexes. In
position-based indexes, queries are processed using word element and
position. On the other hand, paths in tree structures are used in path-based
indexes. We do not use special indexes for structured documents in this
article; but our storage method is closely related to the concept of the
aforementioned indexes.

Finally, the topic of an abstract data type is related to both storage and
query retrieval. Blake et al. [1995] describe an approach in which an XML
document is regarded as just a sequence of characters, then operations on
tree structures are replaced by those on character strings, and an abstract
data type is defined in a database having such operations. Our approach
differs from previous ones in that we simply use an off-the-shelf database
system; that is, we do not need any special full-text search system or
indexing structure to translate XPath queries into SQL.

3. AN OVERVIEW OF XML DOCUMENTS

An XML document consists of three parts: an XML declaration, a DTD
(Document Type Definition), and an XML instance.1 An XML declaration
and a DTD are not mandatory for an XML document. An XML declaration
specifies the version and the encoding of the XML being used. A DTD is a
schema that constrains the structure of XML instances and corresponds to
an extended context-free grammar. An XML instance is a tagged document.
We omit concrete descriptions of an XML declaration and a DTD.

An XML instance is a hierarchy of elements, the boundaries of which are
either delimited by start-tags and end-tags, or, for empty elements, by
empty-element tags. Character data between start-tags and end-tags is the
content of the element. Figure 1 shows an example of an XML instance. A
start-tag is the token that encloses an element type with , and ., and an

1Although the term “XML instance” does not appear in the XML Recommendation [World
Wide Web Consortium 1998], we use this term to represent XML document data excluding an
XML declaration and a DTD.

116 • M. Yoshikawa et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

end-tag is the token that encloses an element type with ,/ and ..
Elements can nest properly within each other, and the nesting represents
logical structure. Attribute names and attribute values can be specified
within start-tags.

XML documents have two levels of conformance: valid and well-formed. A
well-formed XML document follows tagging rules prescribed in XML. An
XML document is valid if it is well-formed and if the document complies
with the constraints expressed in an associated DTD.

An XML processor examines whether an XML document is well-formed
(or valid). The XML processor is a software module used to read XML
documents and provide access to their content and structure. It is assumed
that an XML processor is doing its work on behalf of another module, called
the application [World Wide Web Consortium 1998].

3.1 Data Model for XML Documents

We employ the XPath data model [World Wide Web Consortium 1999] to
represent XML documents. We assume that XML documents are guaran-
teed to be valid or well-formed by XML processors. Here, we briefly
introduce the XPath data model. The full specifications of the data model
can be found in World Wide Web Consortium [1999].

In the XPath data model, XML documents are modeled as an ordered
tree. There are seven types of nodes. For simplicity, in this article we
consider only the following four types of nodes. For each type of node, there
is a way of determining a string-value for a node of that type. Some types of
nodes also have an expanded-name. Document order is defined for all the

<issue>
<editor>

<first>Michael</first>
<family>Franklin</family>

</editor>
<articles>

<article category="research surveys">
<title>Comparative Analysis of Six XML Schema Languages</title>
<authors>

<author>
<first>Dongwon</first>
<family>Lee</family>

</author>
<author>

<first>Wesley</first>
<middle>W.</middle>
<family>Chu</family>

</author>
</authors>
<summary>As <keyword>XML</keyword> is emerging ... </summary>

</article>
</articles>

</issue>

Fig. 1. An XML instance.

XRel: A Path-Based Approach • 117

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

nodes in the document and corresponds to the order in which the first
character of each node occurs in the XML document. Reverse document
order is simply the reverse of the document order.

—Root node: The root node is the root of the tree. The element node for the
document element is a child of the root node. The string-value of the root
node is the concatenation of the string-value of all text node descendants
of the root node in document order.

—Element nodes: There is an element node for every element in the
document. An element node has an expanded-name, which is the element
type name specified in the tag. Element nodes have zero or more
children. The type of each child node is Element or Text. The string-value
of an element node is the concatenation of the string-values of all text
node descendants of the element node in document order.

—Attribute nodes: Each element node has an associated set of attribute
nodes. Note that the element node is the parent of each of the attribute
nodes; however, an attribute node is not a child of the element node.
Attribute nodes have an attribute name and an attribute value. Attribute
nodes have no child nodes. The expanded-name and string-value of an
attribute node is its name and value, respectively. If more than one
attribute of an element node exists, the document order among the
attributes is not distinguished. This is because there is no order among
XML attributes.

—Text nodes: Text nodes have character data specified in the XML Recom-
mendation as a string-value. A text node does not have an expanded-
name. Text nodes have no child nodes.

The remaining three types of nodes are namespace nodes, processing
instruction nodes, and comment nodes. The discussion in this article will be
extended to include the remaining three types of nodes.

Figure 2 is a graphic depiction of the data model instance of the XML
document in Figure 1. We call such graphs XML trees.

4. DATABASE SCHEMAS FOR STORING XML DOCUMENTS

In this section we describe database schemas for storing XML documents.
First, the basic XRel schema, which is based on SQL-92 data types, is
introduced. Then several variations of the basic XRel schema are described.
Some of the variations assume functionalities not supported in SQL-92.

4.1 Basic XRel Schema

Since path expressions frequently appear in XML queries, we use paths as
a unit of decomposition of XML trees. For each node excluding the root
node in XML data model instances, we store the information on the path
from the root node to the node. For example, the path from the root to node
3 (and to node 10, respectively) in Figure 2 can be denoted #/issue#/
editor (and #/issue#/articles#/article#/@category , respectively).

118 • M. Yoshikawa et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

More precisely, the path from the root node to an element (or attribute)
node can be represented by a path expression defined by the nonterminal
symbol SimplePathExpr shown in Figure 3. Hereafter, we will call such a
path expression a simple path expression (of an element node or an
attribute node). We also define that the simple path expression of a text
node is the same as that of its parent element node. Note that, in simple
path expressions, #/ is used as a delimiter of steps, instead of / used in
path expressions of XPath. We will explain, in Section 5.1, the reason why
we use #/ instead of / .

Unfortunately, simple path expressions are insufficient to restore the
topology of XML trees, since more than one node may share the same
simple path expression and precedence relationships among nodes are lost
in simple path expressions. Hence, to preserve the precedence and ances-
tor/descendant relationships among nodes, the region of each node is also
kept.

Definition 1. The region of an element or text node is a pair of numbers
that represent, respectively, the start and end positions of the node in an
XML document. The region of an attribute node is a pair of two identical
numbers equal to the start position of the parent element node plus one.

The reason we use a somewhat unusual definition of the region of
attribute nodes is twofold: (i) the document order among attribute nodes
sharing the same parent element node are left implementation-dependent
in the specification of the XPath data model; and (ii) the technical reason
that the parent element node of an attribute node can be judged by the
comparison , (not by #) between the first numbers of their regions. The

article

Dongwon

author

Lee

author

authors

first family

Wesley W.

first middle

Chu

family

As

summary

keyword

XML

Michael

editor

Franklin

first family

articles

issue

root

element

attribute

abc string-value

text

1

2

3

4

5

6

7

8

9

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 28

29

category

research surveys

11
title

Comparative Analysis
of Six XML

 Schema Languages

10

12

is emerging ...

30

Fig. 2. An XML tree.

XRel: A Path-Based Approach • 119

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

key idea of the storage scheme in XRel is to keep the combination of the
simple path expression and the region of nodes in an XML tree as relation
tuples, thus preserving the information of the topology of the XML tree and
the expanded-names of nodes.

For example, simple path expressions and the regions of some nodes in
Figure 2 can be represented as follows:

node 10 #/issue#/articles#/article#/@category (82, 82)
node 14 #/issue#/articles#/article#/authors#/author (190, 248)
node 28 #/issue#/articles#/article#/summary#/keyword (348, 369).

In the basic XRel schema, we create one relational schema for each node
type. A tuple in the relation for a node type represents a node of the type,
and stores the simple path expression, the region, and some additional
information including the string-value of the node. Nodes of different XML
documents are stored in the same relation as long as they are of the same
type. To distinguish such nodes, document identifiers are also stored in
tuples. Given that there are three node types (element, attribute, and text)
excluding the root, we create three relational schemas.

When storing a large number of XML documents having the same or
similar structures, which is typically the case when XML documents
conforming to the same DTD are stored, a single simple path expression
may appear many times in relations. To save the storage space, we replace
simple path expressions in the three relations by path identifiers, and
create the fourth relation which stores the pair of path identifiers and
simple path expressions.

Accordingly, the basic XRel schema consists of the following four rela-
tional schemas:

Element(docID, pathID, start, end, index, reindex)
Attribute(docID, pathID, start, end, value)
Text(docID, pathID, start, end, value)
Path(pathID, pathexp).

The database attributes docID , pathID , start , end , and value repre-
sent document identifier, simple path expression identifier, start position of
a region, end position of a region, and string-value, respectively. Given that
the occurrence of an element node or a text node is uniquely identifiable by
its region, the set of database attributes docID , start , and end is a key of
the relation Element and Text . To identify each of the attribute nodes
sharing a common parent element node, an attribute name is required.
Given that the suffix of the simple path expression of an attribute node is
the attribute name, the set of database attributes docID , start , end , and

SimplePathExpr ::= ’#/’ Step
| SimplePathExpr ’#/’ Step

Step ::= NameTest
| ’@’ NameTest

NameTest ::= QName

Fig. 3. The syntax of simple path expressions.

120 • M. Yoshikawa et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

pathID serve as the key of the relation Attribute . The database at-
tributes index and reindex in the relation Element represent the occur-
rence order of an element node among the sibling element nodes in
document order and reverse document order, respectively. In fact, index
and reindex values are not mandatory for restoring original XML docu-
ments; however, these values are useful for processing XML queries effi-
ciently. The database attribute pathexp in the relation Path stores simple
path expressions.

As an example, Figure 4 shows a database instance of the basic XRel
schema that stores the XML document in Figure 1. In Figure 4, NodeID
right outside of the tables Element , Attribute , and Text is not stored in
the tables, but is presented for reference only.

The key features of the basic XRel schema can be summarized as follows:
(1) the topology of XML trees and the expanded-name of nodes are repre-
sented by the combination of simple path expressions and regions; (2) a
relation is created for each node type; and (3) simple path expressions are
extracted in a separate relation to reduce the database size.

4.2 Variations of the Relational Schema

The relational schema described above is one of the most basic. Some
variations can be considered.

4.2.1 Schemas Conforming to the SQL-92 Model.

(1) Preserving the parent information of each node: To efficiently process
XPath expressions such as /books/*/title , containing a special sym-
bol * that matches any element type, it is useful to keep information
about each node’s parent, even though information on parents is
redundant.

(2) Alternative methods for representing regions: In the basic XRel schema,
we simply used the number of bytes counted from the beginning of
document. Further, we can also consider the following methods:
—Given an XML document, for a string data we record the word’s

position in terms of an integer representing its order from the
beginning of the document. For a tag, we represent its position in
terms of a pair of real numbers; the integral part represents the
number of preceding words, and the decimal part represents the
number of tags between the previous word and the current tag. Doing
this enables us to minimize the effects of the appearance of tags on a
word-based proximity search [Sacks-Davis et al. 1998].

—Generally speaking, the contents of XML documents change as time
goes by. When updates to a document occur, positional information
about the previous version of that document is no longer useful.
Hence, it is important to minimize the effects of document updates on
positions. Relative region coordinates (RRCs) [Kha et al. 2001] com-
pute a position in terms of the distance from the beginning of its
parent and not from the beginning of the document.

XRel: A Path-Based Approach • 121

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

Element
docID pathID start end index reindex NodeID

1 1 0 729 1 1 2
1 2 7 70 1 1 3
1 3 15 36 1 1 4
1 4 37 61 1 1 6
1 5 71 721 1 1 8
1 6 81 710 1 1 9
1 8 118 180 1 1 11
1 9 181 335 1 1 13
1 10 190 248 1 2 14
1 11 198 219 1 1 15
1 12 220 239 1 1 17
1 10 249 325 2 1 19
1 11 257 277 1 1 20
1 13 278 296 1 1 22
1 12 297 316 1 1 24
1 14 336 700 1 1 26
1 15 348 369 1 1 28

Attribute
docID pathID start end value NodeID

1 7 82 82 research surveys 10

Text
docID pathID start end value NodeID

1 3 22 28 Michael 5
1 4 45 52 Franklin 7
1 8 125 172 Comparative Analysis ... 12
1 11 205 211 Dongwon 16
1 12 228 230 Lee 18
1 11 264 269 Wesley 21
1 13 286 287 W. 23
1 12 305 307 Chu 25
1 14 345 347 As 27
1 15 357 359 XML 29
1 14 370 690 is emerging as the ... 30

Path
pathID pathexp

1 #/issue
2 #/issue#/editor
3 #/issue#/editor#/first
4 #/issue#/editor#/family
5 #/issue#/articles
6 #/issue#/articles#/article
7 #/issue#/articles#/article#/@category
8 #/issue#/articles#/article#/title
9 #/issue#/articles#/article#/authors
10 #/issue#/articles#/article#/authors#/author
11 #/issue#/articles#/article#/authors#/author#/first
12 #/issue#/articles#/article#/authors#/author#/family
13 #/issue#/articles#/article#/authors#/author#/middle
14 #/issue#/articles#/article#/summary
15 #/issue#/articles#/article#/summary#/keyword

Fig. 4. A storage example of XML documents.

122 • M. Yoshikawa et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

4.2.2 Schemas Beyond the SQL-92 Model.

(1) TEXT type: If the underlying DBMS supports variable length text data,
we can define a relation to store full text data of XML documents in
addition to the basic XRel schema. Larger database size is an obvious
disadvantage for the augmented database schema; however, executing
text search operations becomes possible. Certain proximity searches,
such as those across the boundary of elements, will become very
fast—although processing these search operations is not feasible in the
basic XRel schema.

(2) Introduction of ADTs (Abstract Data Types): If the underlying DBMS
supports user-defined ADTs, we can define the database schemas to
exploit them. An example of such an ADT is the one representing
regions. In the basic XRel schema, two separate attributes are used to
represent regions. We can define an ADT REGIONto manage regions of
nodes. An instance of the REGIONtype is a pair of numbers ~r, s! such
that 0 # r # s. Functions that could be useful for this ADT include the
following:
—BOOLEAN contain(REGION pos)

For a given REGIONinstance pos 5 ~ra, sa!, this function returns
true if ~r , ra! ∧ ~sa , s! holds, and returns false otherwise.

—BOOLEAN precede(REGION pos)

For a given REGIONinstance pos 5 ~ra, sa!, this function returns
true if s , ra holds, and returns false otherwise.

These functions are used to judge the containment and precedence
relationships among occurrences of nodes in a document. In addition, if
R-tree indices are supported by the DBMS, the processing of these
functions is accelerated.

5. QUERY TRANSLATION

In XRel, the relational schema presented in Section 4 is hidden from
applications. Users or applications view XML documents modeled as XML
trees and issue XML queries against the XML trees. The system then
translates XML queries into SQL queries. We describe the query transla-
tion algorithm in detail in this section.

Because a standard XML query language has not emerged yet, we focus
on a class of query expressions commonly found in the XML query lan-
guages proposed so far. An important query construction in XML is path
expressions, which often appear in XML queries. XPath is a language for
addressing parts of an XML document. Although XPath itself is not a
full-fledged query language, its syntax and semantics are used in many
proposed query languages. Thus, we focus on a core part of XPath as an
XML query language for the XRel. We name the core part XPathCore.
XPathCore expressions are basically the intersection of the nonterminal
symbol PathExpr in XPath 1.0 [World Wide Web Consortium 1999] and the

XRel: A Path-Based Approach • 123

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

nonterminal symbol PathExpr in Quilt [Chamberlin et al. 2000]. The
syntax of XPathCore is shown more specifically in Figure 5, in a form of
simplified syntax of the nonterminal symbol PathExpr in Quilt. We assume
that queries in XPathCore are given in the form of PathExpr . The seman-
tics of XPathCore follow XPath 1.0 [World Wide Web Consortium 1999].

5.1 An Overview of the Query Translation

We give an overview of the translation process from XML queries into SQL
queries, against XML documents stored in the relational schema.presented
in Section 4. To give an overview of query translation, we begin with the
following XPathCore expression:

/issue//family (1)

For a given node n in an XML tree, ‘// ’ in XPath 1.0 selects the node n and
all of its descendant nodes. Hence, query (1) selects all family element
nodes that are descendants of any issue element node. A simple but key
observation is that we can easily find the resulting family element nodes
in XRel databases using string matching in SQL. To give a more general
explanation, we define two subclasses of regular expressions (RegularExpr
in Figure 5) in XPathCore: simple regular expressions (SimpleRegularExpr

Query ::= PathExpr

PathExpr ::= RegularExpr
| ’/’ RegularExpr
| ’//’ RegularExpr
| BasicExpr Predicate* ’/’ RegularExpr
| BasicExpr Predicate* ’//’ RegularExpr

RegularExpr ::= Step Predicate*
| RegularExpr ’/’ Step Predicate*
| RegularExpr ’//’ Step Predicate*

Step ::= NameTest
| ’@’ NameTest

Predicate ::= ’[’ Comparison ’]’

BasicExpr ::= ’(’ Comparison ’)’
| Literal
| Number

Comparison ::= ArithExpr
| ArithExpr CompareOp ArithExpr

CompareOp ::= ’=’
| ’!=’

ArithExpr ::= BasicExpr Predicate*
| PathExpr

NameTest ::= QName

Fig. 5. The XPathCore syntax.

124 • M. Yoshikawa et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

in Figure 6) and simple absolute regular expressions (SimpleAbsolu-
teRegularExpr in Figure 6). In XRel databases, simple path expressions
from the root node to every node are stored (recall the syntax of simple path
expression, given in Figure 3). The only difference between simple absolute
regular expressions and simple path expressions is that the former have ‘/ ’
and ‘// ’ as a delimiter of steps, while the latter have ‘#/ ’. We can find nodes
satisfying a simple absolute regular expression s by replacing occurrences
of ‘/ ’ in s by ‘#/ ’ and occurrences of ‘// ’ by ‘#%/ ’, and then performing SQL
string matching using the string after the replacement against the
pathexp attribute in relation Path . Therefore, the XPathCore expression
(1) can be translated into the following SQL query:

SELECT e1.docID, e1.start, e1.end
FROM Element e1, Path p1
WHERE p1.pathexp LIKE ’#/issue#%/family’
AND e1.pathID 5 p1.pathID
ORDER BY e1.docID, e1.start, e1.end

We can now explain why we used ‘#/ ’ instead of ‘/ ’ as a delimiter of
simple path expressions stored in the Path relation. If we had stored a path
expression in the form /issue/family , we would translate query (1) into
the above SQL, provided the third line was replaced into the following
WHEREclause condition.

WHERE p1.pathexp LIKE ’/issue%/family’

The resulting SQL query returns an incorrect answer because the string
pattern

’/issue%/family’

matches not only the path expression /issue/family , but also other
path expressions such as /issues/family , /issuelist/family , and so
on.

Next, let us consider the more complex XPathCore expression below:

//article @summary/keyword 5 ’XML’ #//author/family (2)

This query retrieves the family names of an article’s authors, a summary of
which (the article) contains the keyword ‘XML’. To translate this query into
a SQL query, we need to compensate for the missing prefix of some path
expressions in the query. For example, to process the comparison summary/
keyword 5 ’XML’ in the query using XRel databases, we need to check for
the existence of an element node that has a simple path expression

SimpleRegularExpr ::= Step
| SimpleRegularExpr ’/’ Step
| SimpleRegularExpr ’//’ Step

SimpleAbsoluteRegularExpr ::= ’/’ SimpleRegularExpr
| ’//’ SimpleRegularExpr

Fig. 6. The syntax of a simple regular expression and a simple absolute regular expression.

XRel: A Path-Based Approach • 125

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

satisfying the simple absolute regular expression //article/summary/
keyword . Likewise, we need to concatenate the path expressions //article
and //author/family to obtain the simple absolute regular expression
//article//author/family , which, in turn, is translated into the string
pattern #%/article#%/author#/family in SQL. As this example sug-
gests, in general, simple regular expressions may appear in a query. Also,
long simple absolute regular expressions might be divided into fragments
by predicates, whereas in the Path relation of the XRel databases, simple
path expressions are stored. Therefore, to process the general form of path
expressions in XPathCore, we need to ‘cut’ a given query into fragment
paths and ‘splice’ them into the complete form of simple absolute regular
expressions. We introduce the XPathCore graph to give a clear representa-
tion of and guidance for this ‘cut and splice’ process.

The translation from XPathCore expressions into SQL queries is per-
formed in the following two steps.

(1) In the first step, the XPathCore graph is created as an intermediate
representation of XPathCore expressions. An XPathCore expression is
divided into simple (absolute) regular expressions. In this process,
predicates, groupings, and comparison operators play the role of punc-
tuation marks. Nodes and edges in an XPathCore represent path
expressions and their relationships, respectively.

(2) In the second step, SQL queries are generated from XPathCore graphs.
SQL clauses are generated for each node and edge in an XPathCore
graph.

We give detailed descriptions of each of these two steps in Section 5.2 and
Section 5.3, respectively.

5.2 The translation from XPathCore expressions into XPathCore graphs

From the discussion in Section 5.1, we first need to identify the longest
possible simple regular expressions and simple absolute regular expres-
sions in a given query. To this end, we begin by presenting an alternative
syntax rule for XPathCore expressions. The syntax rule for RegularExpr
can be rewritten as shown in Figure 7. In this figure, ‘1’ is a meta symbol
representing ‘one or more occurrences’. From the syntax rule in Figure 7,
we can generally represent RegularExpr in the following sequence:

S0$P1% 1 A1$P2% 1 . . . $Pn21% 1 An21$Pn%p

where n $ 0. Also, S0, Ai ~i 5 0, . . . , n21! and Pj ~ j 5 1, . . . , n!
represent a language of nonterminal symbols: SimpleRegularExpr , Sim-
pleAbsoluteRegularExpr , and Predicate in Figure 5. ‘{}1’ and ‘{}p’ are
meta symbols, which represent ‘one or many occurrences,’ and ‘zero or
many occurrences,’ respectively.

126 • M. Yoshikawa et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

Example 1. For example, query (2) can be viewed as a concatenation of
A0, P1, and A1, where A0 is //article , P1 is [summary/keyword 5
’XML’] , and A1 is //author/family .

To clarify the relationship among simple regular expressions, simple
absolute regular expressions, and predicates in a given query, we introduce
a graph called the XPathCore graph. The formal definition of the XPath-
Core graph is as follows:

Definition 2. (XPathCore graph). The XPathCore graph is a directed
graph G~N, E! satisfying the following constraints:

—Every node has a node type that is one of the following seven nonterminal
symbols: BasicExpr , Predicate , SimpleRegularExpr , SimpleAbsolute-
RegularExpr , Literal , Number, or Boolean .

—Every node, other than those of the Boolean type, has a value. For a
node of type T, the value of the node is a language of T.

—N is the union of two mutually-disjoint sets of nodes: ordinal nodes and
index nodes. Ordinal nodes are depicted by a solid circle and index nodes
by a dashed circle.

—There is exactly one node in N called the output node of G. The output
node is depicted by a shaded circle.

—E is the union of two mutually-disjoint sets of edges: Et (tree edges) and
Ec (comparison edges). Tree edges are depicted by a solid line and
comparison edges by a dashed line.

—The graph ~N, Et! is a tree with a root. In ~N, Et!, children of a node are
ordered. A tree edge from a parent n to its i-th child m is denoted by
~n, i, m!.

—A comparison edge has a CompareOp as a label. A comparison edge from
n to m with a label u is denoted by ~n, u, m!.

For example, the XPathCore graph of query (2) is shown in Figure 8. In
the figure, the value of a node is depicted near the outside of each node
except for n2, which is a Boolean node.

We now explain the major algorithm GenerateQG, which produces an
XPathCore graph for a given XPathCore expression. From the syntax rule
in Figure 5, we can observe that the nonterminal symbols PathExpr and
Comparison are defined in a mutually recursive manner. To simplify the
presentation, the algorithm GenerateQG is designed for a language of

RegularExpr ::= SimpleRegularExpr PathStep* Predicate*

PathStep ::= Predicate+ SimpleAbsoluteRegularExpr

Fig. 7. Alternative syntax of regular expressions.

XRel: A Path-Based Approach • 127

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

Comparison as an input. Because Comparison has, as its major compo-
nent, the nonterminal symbol ArithExpr , we first give the algorithm
CreateInitialQG that returns an initial XPathCore graph for a given
language of ArithExpr . Observe that a language of ArithExpr can be
represented by one of the following three sequences:

B$P0% p A0$P1% 1 A1$P2% 1 . . . $Pn21% 1 An21$Pn%p

A0$P1% 1 A1$P2% 1 . . . $Pn21% 1 An21$Pn%p

S0$P1% 1 A1$P2% 1 . . . $Pn21% 1 An21$Pn%p

Here, B represents the language of BasicExpr , shown in Figure 5. The
algorithm CreateInitialQG, given in Figure 9, creates the XPathCore graph
in Figure 10. Note that there are two types of P nodes: ordinal nodes and
index nodes.

The algorithm GenerateQG is given in Figure 11. This algorithm first
creates an XPathCore graph in Figure 10 or an XPathCore graph in Figure
12. The algorithm then recursively replaces occurrences of BasicExpr and
Predicate with XPathCore graphs, and finally produces an XPathCore
graph that contains nodes of five node types:

SimpleRegularExpr , SimpleAbsoluteRegularExpr , Literal ,
Number, and Boolean .

After creating an XPathCore graph with the algorithm GenerateQG, we
perform path concatenation on the XPathCore graph. In this process we
concatenate the value of simple regular expression nodes and simple
absolute regular expression nodes along tree edges from the root to a node
in an XPathCore graph to obtain a full path expression.

summary/keyword ’XML’

//author/family

//article

1 2

=

1 2

n1

n2 n5

n4n3

Fig. 8. The XPathCore graph of query (2).

128 • M. Yoshikawa et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

Fig. 9. The algorithm CreateInitialQG.

B

A0

A1

An-1

A2

P01 P02

P11 P12

P21 P22

Pn1 Pn2

P0k0

P1k1

P2k2

Pnkn

. . .

. . .

. . .

. . .

. . .
. . .

1 2

1 2

1 2

1 2

k0+1

k1+1

k2+1

k0

k1

k2

kn

Fig. 10. The XPathCore graph for ArithExpr .

XRel: A Path-Based Approach • 129

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

Definition 3. Let n be a simple regular expression node or a simple
absolute regular expression node in an XPathCore graph G. The concate-
nated-value of n (in G) is defined recursively as follows:

(1) If n has no ancestor simple regular expression or simple absolute
regular expression node, the value of n is the concatenated-value of n.

(2) Otherwise, let na be the closest ancestor simple regular expression or
simple absolute regular expression node. The concatenated-value of n is:
(a) the concatenation of the concatenated-value of na, ‘/’, and the value

of n (if n is of simple regular expression type);

Fig. 11. The algorithm that generates XPathCore graphs from XPathCore expressions.

130 • M. Yoshikawa et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

(b) the concatenation of the concatenated-value of na, and the value of
n (if n is of the simple absolute regular expression type).

Example 2. The concatenated-values of the nodes n1, n3, and n5 in
Figure 8 are //article , //article/summary/keyword , and //article//
author/family , respectively.

5.3 Generating SQL Queries

In this section we present the method to generate SQL queries from an
XPathCore graph.

Figure 13 shows the main prcedure of the generation algorithm. The
algorithm for generating an SQL query from an XPathCore graph becomes
complex when the XPathCore graph contains one or more ordinal nodes of
type Number. This is because, unlike index nodes, we cannot use the
relation attribute index to generate SQL queries. Instead, we need to use
the EXIST and NOT EXIST clauses of SQL. As shown in Figure 13, the
algorithm first calls the procedure GenerateSimpleSQL shown in Figure 15.
The procedure GenerateSimpleSQL disregards ordinal nodes of type Num-
ber , and generates an SQL query for the rest of a given XPathCore graph.
The main algorithm, GenerateSQL, then calls the procedure ProcessOrdi-
nalNodes that adds necessary SQL conditions for ordinal nodes of type
Number in an XPathCore graph.

In Figure 15, we say a node is of type Expr if and only if the node is of
type SimpleRegularExpr or SimpleAbsoluteRegularExpr . As illus-
trated by query 1 in Section 5.1, each occurrence of ‘/ ’ (and ‘// ’, respec-
tively) in path expressions is replaced by ‘#/ ’ (and ‘#%/ ’, respectively) and
used as a pattern in SQL string matching. To express the replacement
formally, we introduce a function f%. For a given SimpleRegularExpr or
SimpleAbsoluteRegularExpr value p, f%~ p! returns a character string
obtained by replacing (i) every occurrence of ‘/ ’ in p by ‘#/ ’ and (ii) every
occurrence of ‘// ’ in p by ‘#%/ ’.

O1 O2

nb

1 2

CompareOp

GenerateQG(E1) GenerateQG(E2)

Fig. 12. The XPathCore graph for a comparison of two ArithExpr s.

XRel: A Path-Based Approach • 131

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

Example 3. For example, the XPathCore query (2) is translated into the
following SQL query.

SELECT e5.docID, e5.start, e5.end
FROM Path p1, Path p3, Path p5,

Element e1, Element e5,
Text t3

WHERE p1.pathexp LIKE ’#%/article’
AND p3.pathexp LIKE ’#%/article#/summary#/keyword’
AND p5.pathexp LIKE ’#%/article#%/author#/family’
AND e1.pathID 5 p1.pathID
AND e5.pathID 5 p5.pathID
AND t3.pathID 5 p3.pathID
AND e1.start , t3.start
AND e1.end . t3.end
AND e1.docID 5 t3.docID
AND e1.start , e5.start
AND e1.end . e5.end
AND e1.docID 5 e5.docID
AND t3.value 5 ’XML’
ORDER BY e5.docID, e5.start, e5.end

Next we turn to two examples of XPathCore expressions, in which the
order of elements is specified. The following XPathCore expression re-
trieves a family element that is the second child of an author element.

//author/family[2]

In an XPathCore graph, an index node of type Number is created. Then
the following SQL query is generated. In this SQL query, a condition on the
relational attribute index is specified to handle the occurrence order of
elements.

SELECT e1.docID, e1.start, e1.end
FROM Path p1, Element e1
WHERE p1.pathexp LIKE ’#%/author#/family’
AND e1.pathID 5 p1.pathID
AND e1.index 5 2
ORDER BY e1.docID, e1.start, e1.end

The following XPathCore expression has a similar syntax as, but a
different sematics from, the previous expression.

(/ /author/family)[2]

This XPathCore expression retrieves a family element (i) that is a child
of an author element and (ii) among elements satifying condition (i) that is
second in document order. In an XPathCore graph, an ordinal node of type

Fig. 13. An algorithm to generate SQL queries.

132 • M. Yoshikawa et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

Fig. 14. An algorithm to process ordinal nodes.

XRel: A Path-Based Approach • 133

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

Number is created. In this case, we need to use EXISTS and NOT EXISTS
predicates in the translated SQL query, given below.

Fig. 15. The algorithm that generates SQL queries from XPathCore graphs.

134 • M. Yoshikawa et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

SELECT e1.docID, e1.start, e1.end
FROM Path p1, Element e1
WHERE p1.pathexp LIKE ’#%/author#/family’
AND e1.pathID 5 p1.pathID
AND EXISTS (

SELECT *
FROM Path p11, Element e11
WHERE p11.pathexp LIKE ’#%/author#/family’
AND e11.pathID 5 p11.pathID
AND e11.docID 5 e1.docID
AND e11.start , e1.start

)
AND NOT EXISTS (

SELECT *
FROM Path p11, Element e11,

Path p12, Element e12
WHERE p11.pathexp LIKE ’#%/author#/family’
AND p12.pathexp LIKE ’#%/author#/family’
AND e11.pathID 5 p11.pathID
AND e12.pathID 5 p12.pathID
AND e11.docID 5 e1.docID
AND e12.docID 5 e1.docID
AND e11.start , e12.start
AND e12.start , e1.start

)
ORDER BY e1.docID, e1.start, e1.end

6. PERFORMANCE EVALUATION

We have implemented XRel and carried out a series of performance
experiments in order to check the effectiveness of the method. In this
section we report the outlines of the implementation and the experimental
results.

6.1 Experimental Setup

We used Sun Enterprise 4000 (4 3 UltraSPARC-II 248 MHz CPU, 32GB
RAID disk and 2048MB memory) running Solaris 2.5.1 and a commercial
relational database system. We utilized IBM’s XML4J 3.1.0 (XML parser
for Java) on top of Sun JDK 1.2.2 as the XML processor. More specifically,
we used the functionalities of the validating XML parser and SAX (Simple
API for XML) in order to implement the core module of our system, which
converts XML documents into four relations. In that module, we extract
every element’s simple path expression and its position in the document in
a event-driven manner. We then construct the four relations from the
results and store them in the database. We used JDBC to connect with the
database.

We evaluated the performance of XRel in comparison with other related
studies. We selected the study of Florescu and Kossmann [1999a; 1999b] in
which XML documents are modeled as ordered and labeled as directed
graphs. For simplicity, Florescu and Kossmann do not distinguish elements
and XML attributes. Each XML element is represented by a node in the

XRel: A Path-Based Approach • 135

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

graphs and element-subelement relationships are represented by edges
whose labels represent subelement names. Text values are represented as
leaves in the graphs.

For their model, Florescu and Kossmann proposed several schemes for
mapping XML data into relational tables. They divided the problem into
the following two subproblems: how to map edges and how to map values.
To solve the former, they proposed the following three approaches:

~Ee! An edge approach that stores all edges of the graph that represents an
XML document in a single table.

~Eb! A binary approach that groups all of the same labels into one table.

~Eu! A universal approach that stores a single table containing attributes
for all element and attribute names.

To solve the latter, they proposed the following:

~Vs! A separate value tables approach that stores values in separate value
tables for each conceivable data type.

~Vi! An inlining approach that stores values and attributes in the same
tables.

In theory, we can freely combine the former three approaches for map-
ping edges and the latter two approaches for mapping values. Florescu et
al. carried out a performance analysis on those combinations, and con-
cluded that the combination of ~Eb! and ~Vi! outperforms the others. This
approach is called “binary tables with inlining.” In the technique, every
XML element is assumed to have a unique identifier, like oid in object
databases. All elements with the same name are stored in one table. The
table has the following structure:

Bname~source, ordinal, valueint, valuestring, target!.

where oids of the source and target elements of each edge are recorded. The
key of this table is {source, ordinal}. Figure 16(a) and (b) show a storage
example of Figure 2. In the sequel, we refer to the scheme as FK99. Note
that the relational schema in FK99 depends on the structure of XML
documents being stored, while XRel does not.

We implemented FK99 using the database on which we implemented
XRel. Note that given an XPath query, FK99 requires a number of join
operations in proportion to the length of the path expression. Furthermore,
a recursive query, which is not supported in SQL–92, is essential when
processing ‘// ’. If a recursive query is not supported, we have to expand the
query into several subqueries by hand using the information from DTDs.

136 • M. Yoshikawa et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

6.2 Experimental Results

6.2.1 Database Size. We used the Bosak Shakespeare collection2 as the
experimental data. Table I summarizes the characteristics of the collection.

We stored the collection in relational tables using XRel and the approach
proposed by Florescu et al., denoted FK99, respectively. Table II (a) and (b)
show the sizes of the relational tables. For XRel, four relational tables were
generated. The number of tuples contained in each relational table corre-
sponds to the number of nodes in Table I. The Attribute table was empty
because the test data did not contain any attributes. On the other hand, 22
tables were generated by FK99. In other words, the data contained 22
kinds of elements. More precisely, the largest relation, SPEECH, contained
140,277 tuples and the size was 10.2 MBytes. The smallest relation,
SUBTITLE, contained one tuple and the size was 8 Kbytes. The XRel
database size was slightly smaller than that of FK99, but the sizes of both
exceed the size of the original document. However, we can say that this is
permissible, since the cost of storage devices has greatly declined in recent
years and the size of XML documents is usually smaller than that of more
complicated data, such as audio and video.

6.2.2 Query Retrieval. Tables III and IV show the query set and the
time in seconds for processing the queries, respectively. The time was
measured for ten runs and the average was recorded. Note that, in many
cases, FK99 requires extra processing to reconstruct document fragments
from the resulting tuples, since the retrieved answer contains only the
identifiers of elements. On the other hand, because XRel keeps the infor-
mation concerning positions in the original document, all we have to do is
extract substrings from the original XML documents.

From the results of Q1 and Q2, we can see that the performance of XRel
is not affected by the length of simple path expressions, whereas the
performance of FK99 is affected because FK99 requires a number of join
operations in proportion to the length of a path expression. On the other

2^URL: http://metalab.unc.edu/bosak/xml/eg/shaks200.zip&

(a) title

source ordinal valint valstring target

10 2 null Comparative Analysis of ... null
...

(b) author

source ordinal valint valstring target

13 1 null null 15
13 2 null null 17
...

Fig. 16. FK99 storage example

XRel: A Path-Based Approach • 137

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

hand, XRel basically processes a path expression in terms of a SQL-92
string match operation. Thus, performance is independent of the length of
path expressions.

The queries Q3 and Q4 contain one or two ‘// ’. FK99 is faster than XRel
for Q3 because a recursive query is not necessary for processing if ‘// ’ is at
the head of the path expression only. In that case, searching the SCENE
table is equivalent to ‘//SCENE ’ because the table contains all the SCENE
elements in the document. However, if one or more ‘// ’ are in the middle of
a path expression, FK99 consumes much time, as we can see in Q4. Even
so, XRel is effective because XRel can process a ‘// ’ as a string match
operation, including a wild card (‘%’).

Q5 and Q6 concern predicates using an index operator. Basically, XRel is
effective because the information is represented in terms of index and
reindex attributes. However, the information becomes useless if grouping
operator ‘() ’ is used. In that case, we have to use subqueries with an
SQL-92 NOT EXISTS predicate to extract elements in the required order.

Table I. Test Data Details

#of documents 37
Total size (MB) 7.65
Average size (KB) 206.71
#of element nodes 179,689
#of attribute nodes 0
#of text nodes 147,442
#of simple paths 57

Table II. Database Sizes

(a) XRel (b) FK99

Relation Size (MB) Description Size (MB)

Element 10.3 Max 10.2
Attribute 0 Min 0.008
Text 13.2 Average 1.29
Path 0.008 Total 28.29
Total 23.5

Table III. Performance Evaluation Queries

Query expression Feature

Q1 /PLAY/ACT simple path expression (short)
Q2 /PLAY/ACT/SCENE/SPEECH/LINE/STAGEDIR simple path expression (long)
Q3 //SCENE/TITLE one ‘// ’
Q4 //ACT//TITLE two ‘// ’s
Q5 /PLAY/ACT[2] index
Q6 (/PLAY/ACT)[2]/TITLE grouping and index
Q7 /PLAY/ACT/SCENE/SPEECH[SPEAKER 5 ’CURIO’] text matching
Q8 /PLAY/ACT/SCENE[//SPEAKER 5 ’Steward’]/TITLE ‘// ’ and text matching

138 • M. Yoshikawa et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

For this reason, Q6 consumes more time than Q5. In FK99, the same
situation holds, but it is faster than XRel.

Q7 and Q8 contain more complicated predicates such as text matching.
XRel is still effective, whereas FK99 consumes more time or gives up the
processing as translated SQL queries become more complicated. This is
mainly due to growing numbers of join operations.

7. CONCLUSIONS

In this article we described XRel, an approach to the storage and retrieval
of XML documents that uses (object) relational databases. Using XRel
enabled us to easily construct an XPath interface on top of the (object)
relational databases.

In this research, we limited extensions to types and functions, and did
not need any special indexing structure for query processing. However,
some extensions may be needed; for example, abstract data types for
synthesizing query results would be required if we were to implement an
XML–QL interface. Further, because our approach does not use a special
full-text search system, it may not achieve high performance on query
retrieval. Thus it is important to develop abstract data types to improve
performance. Full-text search for document content, consideration of data
types and XML schemas, and support for document updates will be in-
cluded in our future work.

In some DTDs or document structures, it might be effective to design
relational schemas combining the structure-mapping approach and the
model-mapping approach. To design optimal relational schemas based on
such statistical characteristics of XML documents is a challenging subject
of research.

In general, the contents of XML documents vary over time. It is quite
useful in many applications to record the temporal changes made to XML
documents. In order to capture such temporal XML documents, we are
investigating temporal extensions to XML databases [Amagasa et al. 2000;
2001].

REFERENCES

ABITEBOUL, S., CLUET, S., CHRISTOPHIDES, V., MILO, T., MOERKOTTE, G., AND SIMÉON,
J. 1997. Querying documents in object databases. Int. J. Dig. Lib. 1, 1, 5–19.

Table IV. Query Performance (in seconds)

XRel FK99 tuples

Q1 0.021 0.026 185
Q2 0.024 0.694 618
Q3 0.320 0.125 750
Q4 0.304 16.509 766
Q5 0.805 0.159 37
Q6 2.790 0.737 74
Q7 2.748 19.306 4
Q8 9.687 — 6

XRel: A Path-Based Approach • 139

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

AMAGASA, T., YOSHIKAWA, M., AND UEMURA, S. 2000. A data model for temporal XML
documents. In Proceedings of the 11th International Conference on Database and Expert
Systems Applications (DEXA 2000, Sept.). Springer-Verlag, New York, NY, 334–344.

AMAGASA, T., YOSHIKAWA, M., AND UEMURA, S. 2001. Realizing temporal XML repositories
using temporal relational databases. In Poceedings of the Third International Symposium
on Cooperative Database Systems for Advanced Applications (CODAS’ 2001, Apr.), 63–67.

BAEZA-YATES, R. AND NAVARRO, G. 1996. Integrating contents and structure in text retrieval.
SIGMOD Rec. 25, 1 (Mar.), 67–79.

BLAKE, G., CONSENS, M., DAVIS, I., KILPELAINEN, P., KUIKKA, E., LARSON, P.-A., SNIDER, T., AND

TOMPA, F. 1995. Text/relational database management systems: Overview and proposed
SQL extentions database prototype. Tech. Rep. 95-25. Centre for the New OED and Text
Research, University of Waterloo, Waterloo, Canada.

BONIFATI, A. AND CERI, S. 2000. A comparative analysis of five XML query languages.
SIGMOD Rec. 29, 1, 68–79.

BURKOWSKI, F. J. 1992. An algebra for hierarchically organized text-dominated databases.
Inf. Process. Manage. 28, 3, 333–348.

CHAMBERLIN, D., ROBIE, J., AND FLORESCU, D. 2000. Quilt: An XML query language for
hetergeneous data sources. In Proceedings of the International Workshop on Web and
Databases (WebDB ’2000). Springer-Verlag, New York, NY, 1–25.

CHRISTOPHIDES, V., ABITEBOUL, S., CLUET, S., AND SCHOLL, M. 1994. From structured
documents to novel query facilities. SIGMOD Rec. 23, 2 (June), 313–324.

CLARKE, C. L. A., CORMACK, G. V., AND BURKOWSKI, F. J. 1995a. An algebra for structured text
search and a framework for its implementation. Computer J. 38, 1, 43–56.

CLARKE, C. L. A., CORMACK, G. V., AND BURKOWSKI, F. J. 1995b. Schema-independent retrieval
from heterogeneous structured text. In Proceedings of the 4th Annual Symposium on
Document Analysis and Information Retrieval (Las Vegas, NV). 279–289.

DEUTSCH, A., FERNANDEZ, M., FLORESCU, D., LEVY, A., AND SUCIU, D. 1998. XML-QL: A query
language for XML. Submission to the WWW Consortium: http://www.w3.org/TR/NOTE-xml-ql/.

DEUTSCH, A., FERNANDEZ, M., FLORESCU, D., LEVY, A., AND SUCIU, D. 1999. A query language
for XML. Comput. Netw. J. 31, 16,17 (May), 1155–1169.

FERNANDEZ, M., SIMÉON, J., AND WADLER, P. 1999. XML query languages: Experiences and
exemplars. Draft, http://www-db.research.bell-labs.com/user/simeon/xquery.ps.

FLORESCU, D. AND KOSSMANN, D. 1999. A performance evaluation of alternative mapping
schemes for storing XML data in a relational database. Tech. Rep. 3680. INRIA, Rennes,
France. http://rodin.inria.fr/dataFiles/FK99.ps.

FLORESCU, D. AND KOSSMANN, D. 1999. Storing and querying XML data using an RDMBS.
IEEE Data Eng. Tech. Bull. 22, 3, 27–34.

HOROWITS, E. AND WILLIAMSON, R. C. 1986. Sodos: A software documentation support
environment—its definition. IEEE Trans. Softw. Eng. SE-12, 8 (Aug.), 849–859.

ISO. 1986. Information processing—Text and office systems—Standard General Markup
Language (SGML). ISO-8879.

KHA, D. D., YOSHIKAWA, M., AND UEMURA, S. 2001. An XML indexing structure with relative
region coordinate. In Proceedings of the 17th IEEE International Conference on Data
Engineering. IEEE Computer Society Press, Los Alamitos, CA, 313–320.

LEAVITT, N. 2000. Whatever happened to object-oriented databases? IEEE Computer 33, 8
(Aug.), 16–19.

NAVARRO, G. AND BAEZA-YATES, R. 1997. Proximal nodes: A model to query document
databases by content and structure. ACM Trans. Inf. Syst. 15, 4, 400–435.

ROBIE, J. 1999. XML query language (XQL). http://metalab.unc.edu/xql/xql-proposal.xml.
ROBIE, J., CHAMBERLIN, D., AND FLORESCU, D. 2000. Quilt: an XML query language.

http://www.almaden.ibm.com/cs/people/chamberlin/quilt_euro.html.
ROBIE, J., LAPP, J., AND SCHACH, D. 1998. XML Query language (XQL). http://www.w3.org/

TandS/QL/QL98/pp/xql.html.
SACKS-DAVIS, R., ARNOLD-MOORE, T., AND ZOBEL, J. 1994. Database systems for structured

documents. In Proceedings of the International Symposium on Advanced Database Technol-
ogies and Their Integration (Oct.). 272–283.

140 • M. Yoshikawa et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

SACKS-DAVIS, R., DAO, T., THOM, J. A., AND ZOBEL, J. 1997. Indexing documents for queries on
structure, content and attributes. In Proceedings of the International Symposium on Digital
Media Information Base (DMIB ’97).

SALMINEN, A. AND TOMPA, F. W. 1994. PAT expressions: An algebra for text search. Acta Ling.
Hungarica 41, 1-4, 277–306.

SHANMUGASUNDARAM, J., TUFTE, K., HE, G., ZHANG, C., DEWITT, D. J., AND NAUGHTON, J. F.
1999. Relational databases for querying XML documents: Limitations and opportunities. In
Proceedings of the 25th International Conference on Very Large Data Bases (VLDB, Edin-
burgh, Scotland, Sept. 7-10). Morgan Kaufmann, San Mateo, CA, 302–314.

WORLD WIDE WEB CONSORTIUM. 2001. XML query. http://www.w3.org/XML/Query.
WORLD WIDE WEB CONSORTIUM. 1998. Extensible markup language (XML) 1.0. http://www.

w3.org/TR/1998/REC-xml-19980210
WORLD WIDE WEB CONSORTIUM. 1999. XML Path language (XPath) version 1.0. http://www.

w3.org/TR/xpath
WORLD WIDE WEB CONSORTIUM. 2000. XML Query data model. http://www.w3.org/TR/2000/

WD-query-datamodel-20000511
WORLD WIDE WEB CONSORTIUM. 2000. XML query requirements. http://www.w3.org/TR/2000/

WD-xmlquery-req-20000815
ZHANG, J. 1995. Application of OODB and SGML techniques in text database: an electronic

dictionary system. SIGMOD Rec. 24, 1 (Mar.), 3–8.

Received: January 2001; revised: March 2001; accepted: March 2001

XRel: A Path-Based Approach • 141

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

