
CSE 533: Error-Correcting Codes Autumn 2006

Problem Set 1
Due on Monday, October 30

Homework policy: Students are encouraged to work on the problems in small groups (of up to 3
people); however, all writeups should be done individually and must clearly cite any collaborators.
You are strongly urged to try and solve the problems without consulting any reference material be-
sides what we cover in class (such as any textbooks or material on the web where the solution may
appear either fully or in part). If for some reason you feel the need to consult some source, please
acknowledge the source and try to explain what difficulty you couldn’t overcome before consulting
the source and how it helped you overcome that difficulty.

1. Operations on Codes. Prove the following statements (the notation (n, k, d)q code is used
for general codes with qk codewords where k need not be an integer, whereas the notation
[n, k, d]q code stands for a linear code of dimension k):

(a) If there exists an (n, k, d)q code, then there also exists an (n− 1, k, d′ ≥ d− 1)q code.

(b) If there exists an (n, k, d)2 code with d odd, then there also exists an (n + 1, k, d + 1)2
code.

(c) If there exists an (n, k, d)2m code, then there also exists an (nm, km, d′ ≥ d)2 code.

(d) If there exists an [n, k, d]2m code, then there also exists an [nm, km, d′ ≥ d]2 code.

(e) If there exists an [n, k, d]q code, then there also exists an [n− d, k− 1, d′ ≥ dd/qe]q code.

(f) If there exists an [n, k1, d1]q code and an [n, k2, d2]q code, then there exists an [2n, k1 +
k2,min(2d1, d2)]q code.

2. Prove the following version of the Plotkin bound for general alphabets. If C ⊆ Σn is a (not
necessarily linear) code over an alphabet of size |Σ| = q with minimum distance d > (1−1/q)n,
then |C| ≤ qd

qd−(q−1)n .

3. (a) Prove that for an [n, k, d]q linear code, we must have

n ≥
k−1∑
i=0

dd/qie . (1)

Hint: Try induction together with Problem (1e) above.

(b) Deduce the Singeton bound for linear codes from bound (1) above.

(c) Show that the simplex codes (dual of the Hamming codes) meet the bound (1).

4. (a) Briefly argue (full proof not required) why the proof of Shannon’s theorem for the binary
symmetric channel that we did in class holds even if the encoding function E is restricted
to be linear.

(b) Prove that for communication on BSCp, if an encoding function E achieves a maximum
decoding error probability (taken over all messages) that is exponentially small, i.e., at
most 2−γn for some γ > 0, then there exists a δ = δ(γ, p) > 0 such that the code defined
by E has relative distance at least δ. In other words, good distance is necessary for
exponentially small maximum decoding error probability.
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(c) Prove that if the encoding function E is restricted to be linear, a similar conclusion
holds even if only the average decoding error probability (computed for a message chosen
uniformly at random) is exponentially small.

5. (a) For positive integers k ≤ n, show that less than a fraction qk−n of the n× k matrices G
over Fq fail to generate a linear code of block length n and dimension k. (Or equivalently,
except with probability less than qk−n, the rank of G is k.)

(b) Consider the q-ary erasure channel with erasure probaility α (qECα, for some α, 0 ≤
α ≤ 1): the input to this channel is a field element x ∈ Fq, and the output is x with
probability 1− α, and an erasure ’?’ with probability α. For a linear code C generated
by an n× k matrix G over Fq, let D : (Fq ∪ {?})n → C ∪ {fail} be the following decoder:

D(y) =
{

c if y agrees with exactly one c ∈ C on the unerased entries in Fq

fail otherwise

For a set J ⊆ {1, 2, . . . , n}, let Perr(G|J) be the probability (over the channel noise
and choice of a random message) that D outputs fail conditioned on the erasures being
indexed by J . Prove that the average value of Perr(G|J) taken over all G ∈ Fn×k

q is less
than qk−n+|J |.

(c) Let Perr(G) be the decoding error probability of the decoder D for communication using
the code generated by G on the qECα. Show that when k = Rn for R < 1 − α, the
average value of Perr(G) over all n× k matrices G over Fq is exponentially small in n.

(d) Conclude that one can reliably communicate on the qECα at any rate less than 1 − α
using a linear code.

6. We now define the tensor product operation that was used in class to discuss Elias’ construc-
tion of iterated product of Hamming codes to achieve reliable communication at positive rate
for BSCp for some positive p with an explicit construction and polynomial time decoding. We
only focus on binary codes, but the definition applies over any field. Let C1 be an [n1, k1, d1]2
code with generator matrix G1 ∈ {0, 1}n1×k1 and let C2 be an [n2, k2, d2]2 code with genera-
tor matrix G2 ∈ {0, 1}n2×k2 . The tensor product (or simply product) of C1 and C2, denoted
C1 ⊗ C2, is a code of block length n1n2 defined as

C1 ⊗ C2 = {G1MGT
2 | M ∈ {0, 1}k1×k2} .

(a) Prove that C1 ⊗ C2 is an [n1n2, k1k2, d1d2] binary linear code.

(b) Prove that codewords of C1 ⊗ C2 correspond to n1 × n2 matrices all of whose columns
are codewords of C1 and all of whose rows are codewords of C2.
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