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1 Last Lecture
• Reed Muller code distance properties

• Majority logic decoding

• Binary codes based on Reed Solomon code

• Field extension

2 Concatenated Codes [Forney '66]
Concatenated codes are generated from an operation of combining 2 codes to obtain, C1 ¦ C2,
where C1 is an (N,K,D)Q code and C2 is an (n, logqQ, d)q code. Figure 1 shows the conceptual
operation of the outer code, C1, and the inner code, C2, in generating in concatenated code.
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Outer Coding, C1

Figure 1: Conceptual operation of code concatenating.

The concatenated code generated from an outer code of (N,K, D)Q and an inner code of
(n, logqQ, d)q is an (Nn, logqQ,≥ Dd) code. Note that these numbers are similar to the code
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generated from the tensor product of a (N, K, D)Q code and a (n, logqQ, d)q code. The only
difference is that distance of the concatenated code is equal or greater than the product of the
individual distances whereas the distance of the code generated from tensor product is equal to the
product of the individual distances.

Proof. Distance of concatenated code ≥ Dd. Assume an outer code, C1, of (N,K,D)Q and an
inner code, C2, of (n, logqQ, d)q. For two messages m1 and m2 (m1 6= m2),

4 (C1(m1), C1(m2)) = D (1)
since the minimum distance of C1 is D. The outer coding produces a distance equal to or larger
than D in each of the N blocks and while the inner coding produces a distance of equal to or greater
than d in all these blocks. Therefore, the distance of the concatenated code is equal to or greater
than D.

If C1 ¦ C2 is linear and Q = qm where m is an integer, then C1 ¦ C2 is also linear over Fq.

?
FQ Fq Fq Fq Fq

m symbols in Fq

Figure 2: σ : FQ → Fqm .

The transition from FQ to Fq denoted by σ is possible if

• σ (x + y) = σ (x) + σ (y)

• σ (αx) = ασ (x+)

For example, F2m is an m dimensional vector space over F2 such that F2m = {α1v1 +α2v2 + · · ·+
αmvm | αi ∈ F2}.

In order to discuss the distance properties of the concatenated code based on an RS code and a
binary linear code. The following assumptions will be made.

• Outer code, C1: RS code of [N, K, N −K + 1]2m and code rate R = K/N .

• Inner code, C2: Binary linear code of [n,m, d]2 and code rater = m/n.

The GV bound can be expressed as

r = 1−H(δ) (2)

d

n
= H−1(1− r)− ε (3)
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The concatenated code C1 ¦ C2 is a binary linear code of [Nn, km,≥ D(N −K + 1)]2. The rate
and the relative distance of the concatenated code can be expressed as

rate = Rr (4)

relative distance ≥ (1−R)(H−1(1− r)− ε) (5)
Note that H−1(y) with 0 ≤ y ≤ 1 has a unique x ∈ [0, 1/2] such that H(x) = y. Since rate = Rr,
this gives a binary linear codes of rate R0 and relative distance at least

δZyablov (R0) = max
R0<r<1

(
1− R0

r

)
H−1 (1− r) (6)

This bound is known as the Zyablov bound and can be plotted as shown below.

R

0.5

1

GV bound

Zyablov bound

δ

Figure 3: GV bound vs Zyablov bound.

The signi�cance of the concatenated code is that it is possible to construct a linear binary code
meeting the Zyablov bound in polynomial, 20(m), time.

Another way of writing the Zyablov bound is shown below.

RZyablov (δ) = max
δinδout=δ

(1− δout) (1−H (δin)) (7)

For δ = 1/2− ε (R ≈ 0 but positive)
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• GV bound: R(1
2
− ε) = 1−H(1

2
− ε) = 1− (1− (1− 0(ε2))) = Ω(ε2)

• Zyablov bound: δout = 1− ε, δin = 1
2
− ε/2 ⇒ δinδout = 1

2
− ε + ε2/2 ≥ 1

2
− ε

Note that the rate concatenated code in the above case is

rate = (1− (1− ε))(1−H(
1

2
− ε

2
) = Ω(ε3) (8)

which is off from the GV bound by a factor of ε. Getting the rate asymptotically better than Ω(ε3)
for δ = 1

2
− ε with polynomial construction time is an open question.

Applying δ = 1/2− ε to some of the bounds that were discussed in class
• Elias bound: R(δ) = 1−H(1−√1−2δ

2
) ⇒ R(δ = 1

2
− ε) = 1−H(1−√ε

2
) ≤ 0(ε)

• Plotkin bound: R(δ) ≤ 1− 2δ ≤ 2ε

• Record bound (known as MRRW or LP bound, 1978):
R(δ) ≤ H(1

2
−

√
δ(1− δ)) ⇒ R(δ = 1

2
− ε) ≤ H

(
1
2
−

√
1
4
− ε2

)
≈ 2ε2log 1

q

3 Justesen's Code [Justesen '73]
Asymptotically good codes for binary refers to a family of (R,δ) codes with R, δ > 0. Such a family
of binary codes was found by Justesen. The main idea behind Justesen's code is that

• All inner codes do not have to be the same.

• Not all the inner goods have to be good (i.e., on the GV bound). Just need an ensemble of N
codes most of which are good.

In Forney's version of the concatenated code, an asymptotically good code was found and
applied to all the code symbols produced by an outer code. But the codes applied to different
coordinates need not to be the same. What is needed is just an ensemble of N codes most of which
are good. Justesen de�ned a generalized notion of concatenation as follows. Given an [N,K,D]Q
code C and a vector of inner [n, k, di]q codes (C0, C1, · · · , CN−1) such that for all but εN inner
codes di ≥ d, he de�ned C · (C0, C1, · · · , CN−1) to be the code obtained by applying Ci on ith

coordinate of outer code (and concatenating the results).
A rate 1

2
code construction. Let N = 2m − 1 with the following outer and inner code

• Outer code, RS [N = 2m − 1, K, N −K + 1]2m

• Inner code, {Cα
in}α∈F2m−{0}, each Cα

in is an [2m,m, ?]2 binary linear code
The overall rate of the concatenated code becomes 1

2
and the Justesen code can be expressed as

f(x) → (f(α0), f(α1) · · · f(αN−1)) (9)

xf(x) → (α0f(α0), α1f(α1) · · ·αN−1f(αN−1)) (10)
To be continued in next lecture.
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