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In the previous lecture, we defined Reed Muller codes and their variants. Today, we will study
an efficient algorithm for decoding Reed Muller code when the number of errors are less than half
the distance. Then we shall return to our original goal of constructing explicit codes with constant
relative distance and rate. Towards this, we will convert Reed Solomon codes in to binary codes.

1 Recap

Let R(r, m) denote the’* order Reed Muller code. Therefore the messages consist of multilinear
polynomials in variablex(;, X5 ... X,, of degree at most. Recall that the length of the code=
2™, the dimensiork = Y7 (") and the distance &"". i.e R(r,m)is a[2™, > _ (7),2™ "]
linear code.

Some interesting special cases of the Reed Muller code:

e With r = Z, R(r,m) gives a code with ratg and distancel = 2% = /n. Although this is
not constant distance, it is a fairly non-trivial code with a good rate.

e With r = 1, R(r,m) yeilds a linear code with parametggs’, m + 1,2™~!]. Further with
r = 1, a code word consists of the evaluation of a ded(&rear) function ovef;'. Hence
R(1,m) code consists of the Hadammard codes and their complements.

2 Reed’s algorithm

2.1 Notation

We willuse X = (zy,...,z,,) to denote an element &%'. For a subset C {1,...,m}, let Xg
denote the restriction ok to indices inS. i.e |S|-dimensional vector consisting af for i € S.
Denote byS the complement of a sét

Let R(r,m) be a binary Reed Muller code. Lgt: F* — T, be given as a table of values. fif
is a codeword thetrf is a polynomialP(z4, . .. x,,) of degree atmost. For a general functiorf,
define the distance from a polynomi(x, .. ., z,,) as follows:

A(f;p) = HaeFy|f(a) # Pa)}|



2.2 Algorithm

The input consists of a message which is atngoat/vay from a codeword. In particular, we are
given a functionf : F3* — [, such that there exists a polynomialof degreer with A(f, P) <
?. The goal of the algorithm is to output polynomial

Let us sayP is of the form

P(X): Z CSH%‘

SC{1,...,n}I|S|<r €S

For asubset C {1,2,...,m}, define the polynomial

Rs(X) =[] =i

i€S

Observation 2.1. For any proper subséf’ C S, we have

Proof: Let: € S — T, then we can write the above summation as follows :

> Rp(a) = Y R+ > Rrla)

aEF‘QS‘ aEFIQS‘ ,a;=0 aeIFIQS‘ ,a;=1
= 2 E RT (CL) =0
acF! ;=0

Observation 2.2. For any setS,

Proof. Recall thatRs(a) = [],.5zs. Hence for all but one of the valuese F;', Rg(a) is 0.
Therefore the above identity follows. O

Lemma 2.3. For all b € F7*™", and a degree polynomial P the following is true

Z P(a) =cs

a€Fy,a5=b

Proof : Let P, be the polynomial obtained by substitutihge 5" for variables{xz;|i € S}.
HenceP, is of the following form :



Pb(X) = CsRS ‘l— Z CLTRT

TCS

for someay.

Y, Pl = ) B

a€Fy,a5=b y€Fy
= s ) Rs(y)+ ) ar ) Re(y)
yery, TCS yery,

Using observatioh 2J[1,2.2 with the above equation, it follows that

a€Fy",a5=b

O
The lemma 23 suggests an algorithmic method to obtain the coefficigntthe polynomial
P. Simply sum the value of the polynomial for alle 3 with ag = b for someb € Fi. Further
for each of the™~" choices fom, the sum ranges over disjoint set of point&ip. That is the sets
{a € FJ'|ag = b} are all disjoint.
By our assumptionf differs from the polynomialP in atmost2™~"~! — 1 positions. Hence
for atleas™ " — (2m~"! — 1) values ofb we have

>, flag = > Pla)=cs

a€Fy,a5=b a€Fy,ag=b

Out of the2™~" sums of the fornﬁaew ag=b f(a), more thary fraction of them are equal to
cs. Thus a natural way to computg is to compute majority of all these sums. Towards finding
the other lower degree terms iy reduce the problem as follows :

= f- ZCSRS(HS)

P' = P-> csRs(x)

Since [’ is atmost2™™" < 2m~(—1) away from a degree — 1 polynomial P’, the above
procedure can be used to find the degree1 terms of P’. Hence iteratively, all the coefficients
cs of P can be computed.

The formal description of the algorithm is given below



Reed’s Algorithm

Input : A function f : F* — F, such that there exists a polynomial of degreer
with A(f, P) < £—.
Output : The polynomialP.

t—nrF—fP—0
Whilet > 0 do
ForeachS C {1,...m} with |S| =t

cs = Majorityoverallbof (> F(a))

a€Fy ,a5=b

P = P—i—cSHmi

For eachr € F7!

t—t—1
Output P

3 Extension Fields

For every prime, the fieldF, consists of 0, 1, . . ., p—1} with addition and multiplication modulo
p. For any integef:, the extension field . is obtained as follows:

Consider the ring,[z] consisting of polynomials over one variabtg(vith coefficients over
F,. Letg(x) be an irreducible degrele polynomial inF,[z]. Sinceg(z) is irreducible, for any
other polynomial-(z) one of the following two cases is true

e gcd(q(x),r(x)) = 1: By Euclid’s algorithm, we can find(z), b(x) such thatu(z)r(x) +
b(x)q(x) = 1. i.e there exista(z) such that(z)r(z) =1 mod q(z)

e ged(q(z),r(x)) = q(z) :Inthis casei(z) = 0 mod g(x).

That is each polynomial(x) is either0 mod ¢(x) or has an inverse(z). Hence the set of
polynomials modulg(x) form a field. This field consists of all polynomials ovéy with degree
less thank and is denoted b¥,[z]/(¢(z)). Clearly there are* elements in this field. Further it
can be shown that the field obtained from different degre#eeducible polynomials all behave the
same way, i.e are isomorphic to each other.



Notice that the set of polynomial, [z] form a vector space ovél,. Hence the field", [z]/(¢(x))
also form a vector space over the fidlgl Every polynomial of degree less tharcan be repre-
sented naturally as a lengthvector ofF,,. This implies a representation/mapping of elements of
the extension field",[z]/(¢(z)) ask-dimensionalF, vectors. So we have a mapping

Fpla] k
o : At N

(g(z)) 7
Infact the above mapping is a linear mapping in the following sense : For any two elements

r(z), s(x) of (f;‘(’g[g]) we have

o(r(z) + s(z)) = o(r(x)) + ¢(s(x))
In summary, elements of the extension field can be representediasgensional vectors over
IF, in a way that preserves linearity.

3.1 Irreducible Polynomials

Explicit irreducible polynomials are necessary to construct extension fields. It can be shown that
there is an abundance of irreducible polynomials, that is a random degyelynomial is irre-
ducible with high probability. Explicit construction of irreducible polynomials are also known.

Lemma 3.1. For eachk > 0 the following polynomial oveF is irreducible

3k—1

P(z) =2 + 2% 41

Proof: Suppose not, let us say there are polynomi@is), R(x) over F, such thatP(z) =
Q(z)R(x). Observe that

2 1= - DEPT 2 1)

Let F; be the algebraic closure &f. All our arguments will be oveFs, of whichFs is a subfield.
Let ¢ be the3* primitive root of1. So we have

¢ =1
¢ #

Sincez® —1 = (23" — 1)P(z) we getP(¢) = 0. Hence eithef)(¢) = 0 or R(¢) = 0, without
loss of generality we can assur@¢¢) = 0. Recall thatb : x — z? gives an automorphism of the
% known as the Frechet's mapping. That is for any two elemenjave have

O(z)+2(y) = P(v+y)
P(z) x(y) = P(ay)



Further the elements df, = {0,1} are fixed by the mappin@ : * — z?. In particular the
coefficients of the polynomia) are fixed by®. Therefore if we applyp on the equatio®)(¢) = 0,
we getQ(¢?) = 0. Applying this repeatedly, we can conclude that¢?, ¢, ..., ¢*'} are all roots
of Q. Now let us count the number of distinct elements of the fgfm Letn = 3, then the
Euler’s totient functionp(n) = 2 - 3~1. By Euler’s theorem

29" — 1 modn

Clearly this implies that2’(™ = ¢. Since( is a primitiven’ root of 1,¢2' = ¢ implies2i =

mod n. It can be shown thatis a primitive root modula: = 3*. Therefore for any < ¢(n), 2! #

1 mod n. Hence all the elements (2, ..., ¢2*"™ ™" are distinct. Recall that all these elements are
roots of@. But sinceP(z) = Q(x)R(x), the degree of) < ¢(n). This is a contradiction, sina@
cannot have more than roots than its degree. ]

4 Reed Solomon Codes

Reed Solomon codes are explicit linear codes that are optimal in that they meet the Singleton
bound. However these codes are over an alphabet ofj sizé&bg n. Now let us try to obtain good
codes over a smaller alphabet(€gy using Reed Solomon codes.

A natural thing to do is to represent each alphabet by a binary string of léngih Let us
assumey is a power of2, i.e ¢ = 2'. This can be arranged for by choosing a Reed Solomon code
over an extension field of a degre&,-irreducible polynomial. Then as observed earlier, there is
a natural representation of elements of the extension fieldlasensional vectors ovét,. Recall
that this representation preseves linearity. This is good news, since we not only obtained a binary
code but also a binary linear code.

Let us investigate the parameters of the binary linear code obtained. Suppose we started with
an, k,d]» Reed Solomon code, then the length of our new code,ignd dimension igt. We
know that changingl symbols in the original code can change one codeword to another. It is
possible that, each of thedesymbols need to be changed at just one bit. Hence the distance still
remainsd. Therefore the code obtained has parametetst, dl».

However Reed-Solomon codes are popular in practice because errors in real life channels tend
to be burst errors. Hence it is more likely that all therrors are situated together in the same
symbol, or very few symbols. In this case, clearly the codeword can be recovered.

We still have not reached our goal of constructing a family of binary codes with constant rate
and constant distance.

Anldea:

The conversion from Reed Solomon codes to binary linear codes failed because by changing
one bit we could change the original symbol. In other words, two symbols could differ at just
one bit in their representation. Hence we should represent the original alphabet such that different
symbols differ at several places. This is exactly same as the original problem of error correcting
codes. So the idea would be to encode the symbols of the large alphabet using code words of
an error correcting code. In the next class, we will use this idea to construct binary codes with
constant rate and distance.



