
CSE 533: Error-Correcting Codes (Autumn 2006)

Lecture 8: Reed Muller Codes

Lecturer: Venkat Guruswami Scribe: Prasad Raghavendra

In the previous lecture, we defined Reed Muller codes and their variants. Today, we will study
an efficient algorithm for decoding Reed Muller code when the number of errors are less than half
the distance. Then we shall return to our original goal of constructing explicit codes with constant
relative distance and rate. Towards this, we will convert Reed Solomon codes in to binary codes.

1 Recap

Let R(r, m) denote therth order Reed Muller code. Therefore the messages consist of multilinear
polynomials in variablesX1, X2 . . . Xm of degree at mostr. Recall that the length of the coden =
2m, the dimensionk =

∑r
i=0

(
m
i

)
and the distance is2m−r. i.eR(r, m) is a [2m,

∑r
i=0

(
m
i

)
, 2m−r]2

linear code.
Some interesting special cases of the Reed Muller code:

• With r = m
2

, R(r, m) gives a code with rate1
2

and distanced = 2
m
2 =
√

n. Although this is
not constant distance, it is a fairly non-trivial code with a good rate.

• With r = 1, R(r, m) yeilds a linear code with parameters[2m, m + 1, 2m−1]. Further with
r = 1, a code word consists of the evaluation of a degree1(linear) function overFm

2 . Hence
R(1, m) code consists of the Hadammard codes and their complements.

2 Reed’s algorithm

2.1 Notation

We will useX = (x1, . . . , xm) to denote an element ofFm
2 . For a subsetS ⊆ {1, . . . ,m}, let XS

denote the restriction ofX to indices inS. i.e |S|-dimensional vector consisting ofxi for i ∈ S.
Denote byS the complement of a setS.

Let R(r, m) be a binary Reed Muller code. Letf : Fm
2 → F2 be given as a table of values. Iff

is a codeword thenf is a polynomialP (x1, . . . xm) of degree atmostr. For a general functionf ,
define the distance from a polynomialP (x1, . . . , xm) as follows:

∆(f, p) = |{a ∈ Fm
2 |f(a) 6= P (a)}|
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2.2 Algorithm

The input consists of a message which is atmostd
2

away from a codeword. In particular, we are
given a functionf : Fm

2 → F2 such that there exists a polynomialP of degreer with ∆(f, P ) <
2m−r

2
. The goal of the algorithm is to output polynomialP .

Let us sayP is of the form

P (X) =
∑

S⊆{1,...,n},|S|≤r

cS

∏
i∈S

xi

For a subsetS ⊂ {1, 2, . . . ,m}, define the polynomial

RS(X) =
∏
i∈S

xi

Observation 2.1.For any proper subsetT ⊂ S, we have∑
a∈F|S|2

RT (a) = 0

Proof: Let i ∈ S − T , then we can write the above summation as follows :∑
a∈F|S|2

RT (a) =
∑

a∈F|S|2 ,ai=0

RT (a) +
∑

a∈F|S|2 ,ai=1

RT (a)

= 2
∑

a∈F|S|2 ,ai=0

RT (a) = 0

Observation 2.2.For any setS, ∑
a∈F|S|2

RS(a) = 1

Proof: Recall thatRS(a) =
∏

i∈S xS. Hence for all but one of the valuesa ∈ F|S|
2 , RS(a) is 0.

Therefore the above identity follows.

Lemma 2.3. For all b ∈ Fm−r
2 , and a degreer polynomialP the following is true∑

a∈Fm
2 ,aS=b

P (a) = cS

Proof : Let Pb be the polynomial obtained by substitutingb ∈ Fm−r
2 for variables{xi|i ∈ S}.

HencePb is of the following form :
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Pb(X) = cSRS(X) +
∑
T⊂S

aT RT (X)

for someaT . ∑
a∈Fm

2 ,aS=b

P (a) =
∑
y∈Fr

2

Pb(y)

= cS

∑
y∈Fr

2

RS(y) +
∑
T⊂S

aT

∑
y∈Fr

2

RT (y)

Using observation 2.1,2.2 with the above equation, it follows that∑
a∈Fm

2 ,aS=b

P (a) = cS

The lemma 2.3 suggests an algorithmic method to obtain the coefficientscS of the polynomial
P . Simply sum the value of the polynomial for alla ∈ Fn

2 with aS = b for someb ∈ Fr
2. Further

for each of the2m−r choices forb, the sum ranges over disjoint set of points inFm
2 . That is the sets

{a ∈ Fm
2 |aS = b} are all disjoint.

By our assumption,f differs from the polynomialP in atmost2m−r−1 − 1 positions. Hence
for atleast2m−r − (2m−r−1 − 1) values ofb we have∑

a∈Fm
2 ,aS=b

f(a) =
∑

a∈Fm
2 ,aS=b

P (a) = cS

Out of the2m−r sums of the form
∑

a∈Fm
2 ,aS=b f(a), more than1

2
fraction of them are equal to

cS. Thus a natural way to computecS is to compute majority of all these sums. Towards finding
the other lower degree terms inP , reduce the problem as follows :

f ′ = f −
∑
|S|=r

cSRS(x)

P ′ = P −
∑
|S|=r

cSRS(x)

Sincef ′ is atmost2m−r < 2m−(r−1) away from a degreer − 1 polynomial P ′, the above
procedure can be used to find the degreer − 1 terms ofP ′. Hence iteratively, all the coefficients
cS of P can be computed.
The formal description of the algorithm is given below
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Reed’s Algorithm

Input : A function f : Fm
2 → F2 such that there exists a polynomialP of degreer

with ∆(f, P ) < 2m−r

2
.

Output : The polynomialP .

t← r, F ← f, P ← 0
While t ≥ 0 do

For eachS ⊂ {1, . . . m} with |S| = t

cS = Majority over allb of
( ∑

a∈Fm
2 ,aS=b

F (a)
)

P = P + cS

∏
i∈S

xi

For eachx ∈ Fm
2

F (x) = F (x)− cS

∏
i∈S

xi

t← t− 1
OutputP

3 Extension Fields

For every primep, the fieldFp consists of{0, 1, . . . , p−1}with addition and multiplication modulo
p. For any integerk, the extension fieldFpk is obtained as follows:

Consider the ringFp[x] consisting of polynomials over one variable(x) with coefficients over
Fp. Let q(x) be an irreducible degreek polynomial inFp[x]. Sinceq(x) is irreducible, for any
other polynomialr(x) one of the following two cases is true

• gcd(q(x), r(x)) = 1 : By Euclid’s algorithm, we can finda(x), b(x) such thata(x)r(x) +
b(x)q(x) = 1. i.e there existsa(x) such thata(x)r(x) ≡ 1 mod q(x)

• gcd(q(x), r(x)) = q(x) :In this casea(x) = 0 mod q(x).

That is each polynomialr(x) is either0 mod q(x) or has an inversea(x). Hence the set of
polynomials moduloq(x) form a field. This field consists of all polynomials overFp with degree
less thank and is denoted byFp[x]/(q(x)). Clearly there arepk elements in this field. Further it
can be shown that the field obtained from different degreek irreducible polynomials all behave the
same way, i.e are isomorphic to each other.
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Notice that the set of polynomialsFp[x] form a vector space overFp. Hence the fieldFp[x]/(q(x))
also form a vector space over the fieldFp. Every polynomial of degree less thank can be repre-
sented naturally as a lengthk vector ofFp. This implies a representation/mapping of elements of
the extension fieldFp[x]/(q(x)) ask-dimensionalFp vectors. So we have a mapping

φ :
Fp[x]

(q(x))
→ Fk

p

Infact the above mappingφ is a linear mapping in the following sense : For any two elements
r(x), s(x) of Fp[x]

(q(x))
we have

φ(r(x) + s(x)) = φ(r(x)) + φ(s(x))

In summary, elements of the extension field can be represented ask-dimensional vectors over
Fp in a way that preserves linearity.

3.1 Irreducible Polynomials

Explicit irreducible polynomials are necessary to construct extension fields. It can be shown that
there is an abundance of irreducible polynomials, that is a random degreek polynomial is irre-
ducible with high probability. Explicit construction of irreducible polynomials are also known.

Lemma 3.1. For eachk > 0 the following polynomial overF2 is irreducible

P (x) = x2·3k−1

+ x3k−1

+ 1

Proof: Suppose not, let us say there are polynomialsQ(x), R(x) over F2 such thatP (x) =
Q(x)R(x). Observe that

x3k − 1 = (x3k−1 − 1)(x2·3k−1

+ x3k−1

+ 1)

Let F∗
2 be the algebraic closure ofF2. All our arguments will be overF∗

2, of whichF2 is a subfield.
Let ζ be the3k primitive root of1. So we have

ζ3k

= 1

ζ3k−1 6= 1

Sincex3k − 1 = (x3k−1 − 1)P (x) we getP (ζ) = 0. Hence eitherQ(ζ) = 0 or R(ζ) = 0, without
loss of generality we can assumeQ(ζ) = 0. Recall thatΦ : x→ x2 gives an automorphism of the
F∗

2 known as the Frechet’s mapping. That is for any two elementsx, y we have

Φ(x) + Φ(y) = Φ(x + y)

Φ(x) ∗ Φ(y) = Φ(xy)
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Further the elements ofF2 = {0, 1} are fixed by the mappingΦ : x → x2. In particular the
coefficients of the polynomialQ are fixed byΦ. Therefore if we applyΦ on the equationQ(ζ) = 0,
we getQ(ζ2) = 0. Applying this repeatedly, we can conclude that{ζ, ζ2, ζ4, . . . , ζ2t} are all roots
of Q. Now let us count the number of distinct elements of the formζ2t

. Let n = 3k, then the
Euler’s totient functionφ(n) = 2 · 3k−1. By Euler’s theorem

2φ(n) = 1 mod n

Clearly this implies thatζ2φ(n) = ζ. Sinceζ is a primitiventh root of 1,ζ2i
= ζ implies2i ≡ 1

mod n. It can be shown that2 is a primitive root modulon = 3k. Therefore for anyi < φ(n), 2i 6=
1 mod n. Hence all the elementsζ, ζ2, . . . , ζ2φ(n)−1

are distinct. Recall that all these elements are
roots ofQ. But sinceP (x) = Q(x)R(x), the degree ofQ < φ(n). This is a contradiction, sinceQ
cannot have more than roots than its degree.

4 Reed Solomon Codes

Reed Solomon codes are explicit linear codes that are optimal in that they meet the Singleton
bound. However these codes are over an alphabet of sizeq ≥ log n. Now let us try to obtain good
codes over a smaller alphabet(sayF2) using Reed Solomon codes.

A natural thing to do is to represent each alphabet by a binary string of lengthlog q. Let us
assumeq is a power of2, i.e q = 2t. This can be arranged for by choosing a Reed Solomon code
over an extension field of a degreet F2-irreducible polynomial. Then as observed earlier, there is
a natural representation of elements of the extension field ast-dimensional vectors overF2. Recall
that this representation preseves linearity. This is good news, since we not only obtained a binary
code but also a binary linear code.

Let us investigate the parameters of the binary linear code obtained. Suppose we started with
a [n, k, d]2t Reed Solomon code, then the length of our new code isnt, and dimension iskt. We
know that changingd symbols in the original code can change one codeword to another. It is
possible that, each of thesed symbols need to be changed at just one bit. Hence the distance still
remainsd. Therefore the code obtained has parameters[nt, kt, d]2.

However Reed-Solomon codes are popular in practice because errors in real life channels tend
to be burst errors. Hence it is more likely that all thed errors are situated together in the same
symbol, or very few symbols. In this case, clearly the codeword can be recovered.

We still have not reached our goal of constructing a family of binary codes with constant rate
and constant distance.
An Idea :

The conversion from Reed Solomon codes to binary linear codes failed because by changing
one bit we could change the original symbol. In other words, two symbols could differ at just
one bit in their representation. Hence we should represent the original alphabet such that different
symbols differ at several places. This is exactly same as the original problem of error correcting
codes. So the idea would be to encode the symbols of the large alphabet using code words of
an error correcting code. In the next class, we will use this idea to construct binary codes with
constant rate and distance.
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