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1 Introduction
We now turn to a different approach to achieve reliable communication over BSCp. Namely, we
focus on answering the question posed in Lecture 2: Are there infinite families of codes (ni, ki, di)
of increasing ni such that ki/ni ≥ R + o(1) and di/ni ≥ δ + o(1) for some constants R and δ?
Specifically, given a fixed distance δ, what is the highest rate that we can achieve with a code? In
this lecture, we will answer the first question affirmatively, and we will provide upper and lower
bounds on the rate achievable by a code for a fixed δ.

Before we begin to answer these questions, we note the connection between finding codes of
high distance and achieving reliable communication over BSCp in the following theorem.

Theorem 1.1. If there exists an infinite family of codes Ci = (ni, ki, di) with rate R and relative
distance δ = 2p + ε for some constants p > 0 and ε > 0, then we can use Ci to communicate over
BSCp with an exponentially decreasing error probability in ni.

Proof. For any codeword in Ci, the number of errors introduced by the BSCp channel is a random
variable obeying the binomial distribution with parameters ni and p. By a Chernoff bound, the
probability that at least δni/2 = (p + ε/2)ni errors occurs is 2−O(ε2ni). Because the distance of Ci

is δni, we can only decode a word incorrectly if at least δni/2 errors occur. This implies that the
probability of decoding incorrectly is 2−O(ε2ni).

Remark 1.2. The converse of this statement can also be shown. Namely, a necessary condition
of having an exponentially small error probability on BSCp is that the code have positive relative
distance.

2 Some Simple Upper Bounds
We have seen that to achieve reliable communication on BSCp it suffices to have a code family
with a relative distance of at least 2p + ε for some constant ε > 0. A natural question to ask, then,
is what is the best rate that we can achieve with relative distance 2p + ε? By Theorem 1.1 and the
converse of Shannon’s Theorem proved in Lecture 3, we know that a code with a relative distance
of 2p + ε cannot have a rate higher than 1−H(p + ε). We show next that this result is essentially
an asymptotic version of the volume bound from Lecture 2.
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Theorem 2.1. For a binary code family C with rate R and relative distance δ,

R ≤ 1−H(δ/2) + o(1) ,

where H is the binary entropy function defined by H(x) = x log2
1
x

+ (1− x) log2
1

1−x
.

Proof. Recall the volume bound, which states that |C|Vol2
(
n,

⌊
d−1
2

⌋)
≤ 2n, where Vol2(n, d) is

the number of points in a ball of Hamming radius d in {0, 1}n. Since k = log2 |C|, we can take
logarithms to yield

k + log2 Vol2 (n, b(d− 1)/2c) ≤ n .

It was argued earlier that Vol2(n, d) = 2H(d/n)n+o(n). Thus, k + H (δ/2) n + o(n) ≤ n, and hence
R = k/n ≤ 1−H (δ/2) + o(1).

If we could find a code having rate 1−H(δ/2) for all positive values of δ, then by Theorem 2.1,
we would have an optimal code. However, we will prove later in this lecture that this is not possible
for all δ. In other words, the bound provided in Theorem 2.1 is not tight. We prove next an upper
bound on the rate called the Singleton bound.

Theorem 2.2. For any (n, k, d)q code, k ≤ n− d + 1.

Proof. Let Σ be an alphabet of size q, and let C be an (n, k, d) code over Σ. We need to show
that k = logq |C| ≤ n− d + 1. Consider the map f : C → Σn−d+1 defined by f(c1, c2, . . . , cn) =
(c1, c2, . . . , cn−d+1). Map f is injective because any two codewords c 6= c′ must differ in at least d
positions and thus f(c) 6= f(c′). Hence |C| ≤ |Σn−d+1| = qn−d+1 and the theorem follows.

Remark 2.3. The asymptotic version of this bound states that R ≤ 1− δ + o(1).

Remark 2.4. For q = 2, the Singleton bound is subsumed by the volume bound, but when the
volume bound is extended for larger q, this is not always the case.

3 A Lower Bound
At this point, we have proved some upper bounds, so we ask now what kind of lower bounds on
rate we can prove. In this section, we prove that there exists a family of codes having both positive
rate and positive distance. The bound we show, called the Gilbert-Varshamov bound, is stated
precisely in the following theorem.

Theorem 3.1. For 0 ≤ δ ≤ 1
2
, there exists a (not necessarily linear) family of binary codes C

having rate R and relative distance δ such that R ≥ 1−H(δ) + o(1).

To prove this theorem, we will show that it is essentially the asymptotic version of the following
lemma for q = 2.
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Lemma 3.2. There exist (n, k, d)q (not necessarily linear) codes with

qk ≥ qn

Volq (n, d− 1)
. (1)

Proof. Consider the code C over Σ (where |Σ| = q) defined by the following construction:

1. Set C ← ∅.

2. While there exists a word x ∈ Σn such that d(x, c) ≥ d for all c ∈ C, set C ← C ∪ {x}.

Clearly, code C has distance d. It also has the property that there are no points in Σn that are at a
distance of more than d−1 from the nearest codeword. Therefore, if we create a ball of radius d−1
centered at each codeword, then the entire space Σn must be covered. Hence |C|Volq(n, d− 1) =
qk Volq(n, d− 1) ≥ qn.

With Lemma 3.2 proved, we are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. In (1), set q = 2, take the base 2 logarithm of both sides, and use our usual
estimate Vol2(n, d) = 2H(δ)n+o(n).

Remark 3.3. The reason that δ is restricted to be no greater than 1
2

in the statement of Theorem 3.1
is that the estimate for Vol2(n, d) using the entropy function is only valid for δ ≤ 1

2
.

If we extend our definition of the entropy function H for alphabets of size greater than 2, then
we can generalize the GV bound for q ≥ 2.

Definition 3.4. The q-ary entropy function Hq is defined by

Hq(x) = x logq(q − 1) +
H(x)

log2 q
.

Remark 3.5. Just as the definition of H is motivated by estimating the volume of a sphere in
{0, 1}n, the definition of Hq is motivated by estimating the volume of a sphere in {1, 2, . . . , q}n. In
particular, it can be shown that Volq(n, αn) = qHq(α)n+o(n).

The GV bound for all values of q is given in the following theorem, whose proof is left as an
exercise.

Theorem 3.6. For all q ≥ 2, and for 0 ≤ δ ≤ 1− 1
q
, there exists a (not necessarily linear) family

of q-ary codes C having rate R and relative distance δ such that R ≥ 1−Hq(δ) + o(n).

In Figure 1, we summarize the asymptotic bounds on the rate achievable by binary codes that
we have derived so far. We have shown that codes with rates “in the ballpark” of the volume bound
exist for δ ≤ 1

2
. However, we do not have any lower bounds yet for the region 1

2
≤ δ ≤ 1. In the

next section, we will show that we cannot achieve rates anywhere near the volume bound in this
region. In fact, we will prove an upper bound stating that there are no codes with asymptotically
positive rate that have a relative distance greater than 1

2
.
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Figure 1: Rate bounds for binary codes

4 The Plotkin Bound
The following upper bound, called the Plotkin bound, states that it is impossible to find an infinite
family of codes that has a constant rate R > 0 for δ ≥ 1

2
.

Theorem 4.1. Let C be a binary code of distance d and block length n. Then

1. if d = n
2
, then |C| ≤ 2n, and

2. if d > n
2
, then |C| ≤ (2d)/(2d− n) = (2δ)/(2δ − 1).

Remark 4.2. Asymptotically, Theorem 4.1 states that a binary code family of relative distance
greater than or equal to δ/2 has O(n) codewords. Hence k = O(log n), and R = k/n → 0 as
n → ∞. This is what we mean when we say that Theorem 4.1 implies that an infinite family of
codes with δ ≥ 1

2
cannot have a positive rate.

Remark 4.3. Although the Plotkin bound is stated in terms of binary codes, its proof can be
extended to show a similar bound for δ ≥ 1− 1

q
for alphabets of size q such that |q| ≥ 2. The proof

of this is left as an exercise.

Before we prove Theorem 4.1, we prove a corollary that provides a new bound for 0 ≤ δ ≤ 1
2
.

Corollary 4.4. For 0 ≤ δ ≤ 1
2
, there cannot exist an infinite family of binary codes having rate R

and relative distance δ such that R > 1− 2δ + o(1).
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Proof. Let C be an (n, k, d)2 code. We show that a consequence of the Plotkin bound is that
2k ≤ 2n−2d+1 · 2d, which implies that R = n

k
≤ 1− 2δ + o(1) as desired. To do this, we use a trick

similar to the one we used in the proof of Theorem 2.2. Consider the map f : C → {0, 1}n−2d+1

defined by f(c1, c2, . . . , cn) = (c1, c2, . . . , cn−2d+1). For a given x ∈ {0, 1}n−2d+1, let

Cx =
{
(cn−2d+2, cn−2d+3, . . . , cn) ∈ {0, 1}2d−1 : f (c1, c2, . . . , cn) = x

}
.

In other words, if Dx is the set of all codewords in C having x as the prefix, then Cx is the set of
suffixes of size 2d− 1 of elements of Dx. Since elements in Cx correspond to codewords in C that
have the same prefix of size n − 2d + 1, and since each pair of codewords in C are at a distance
of at least d from each other, we know that each pair of elements in Cx must be at a distance of at
least d from each other. In other words, Cx is a code of block length 2d− 1 and distance d for all
x. Thus by Theorem 4.1, Cx has at most

2d

2d− (2d− 1)
= 2d

codewords. This implies that no more than 2d codewords in C have the same x ∈ {0, 1}n−2d+1 as
a prefix. Since there are 2n−2d+1 possible such x, we conclude that |C| = 2k ≤ 2n−2d+1 · 2d.

The Plotkin bound is usually proved combinatorially, but we will prove it in a nice way that
relies on the following geometric lemma.

Lemma 4.5. Let v1, v2, . . . , vm be unit vectors in <n. Then

1. if 〈vi, vj〉 ≤ 0 for all i 6= j then m ≤ 2n, and

2. if there exists a constant ε > 0 such that 〈vi, vj〉 ≤ −ε for all i 6= j, then m ≤ 1 + 1
ε
.

Proof. The proof of the first part is left as an exercise. Note, however, that the bound in the first
part is easily reached by taking a basis of <n and its negations.

To prove the second part of the lemma, note that

0 ≤ ‖v1 + v2 · · ·+ vm‖2 =
∑

i

‖vi‖2 + 2
∑
i<j

〈vi, vj〉

≤ m + 2
m(m− 1)

2
· −ε

= m−m(m− 1)ε ,

which implies that m ≤ 1 + 1
ε
.

Proof of Theorem 4.1. Consider the given code C. In the proof it will be useful to us to define
the map f : {0, 1}n → <n by f(x1, x2, . . . , xn) = 1√

n
((−1)x1 , (−1)x2 , . . . , (−1)xn). Clearly, this

map is injective. Also, note that for any c and c′ in C, if the ith digits of c and c′ are the same, then
the ith term in the expansion of 〈f(c), f(c′)〉 is 1/n and otherwise, the ith term in the expansion of
〈f(c), f(c′)〉 is −1/n. Hence, 〈f(c), f(c′)〉 = 1− 2

n
∆(c, c′) ≤ 1− 2d

n
. We can now use these ideas

to prove both parts of Theorem 4.1:
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Figure 2: Revised rate bounds for binary codes

1. Suppose that d = n/2. Then for all c 6= c′, 〈f(c), f(c′)〉 ≤ 0. By the first part of Lemma 4.5
and because f is injective, we conclude that |C| ≤ 2n.

2. Now suppose that d > n/2. Then for all c 6= c′, 〈f(c), f(c′)〉 ≤ 1 − 2d
n

= −
(

2d−n
n

)
< 0.

Now by the second part of Lemma 4.5 and because f is injective, we conclude that

|C| ≤ 1 +
1

2d−n
n

=
2d

2d− n
.

Remark 4.6. We have seen that the Hadamard code presented in Lecture 2 has 2r codewords of
block length 2r, and it’s distance is 2r−1 for all integers r ≥ 1. Thus we have a code of n codewords
that has distance n/2. If we create a new code from the Hadamard code by adding the compliment
of each codeword, it is not hard to show that the distance is still n/2. The existence of this code
proves tightness for the first bound given in Theorem 4.1.

We summarize all of the bounds we have proved in Figure 2. By using some simple ideas, we
have achieved fairly tight upper and lower bounds on the rate achievable for any value of δ.
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