Last Class
- End Gap Amplification
- High level view of Composition

Today
- Formal Definition of AT = Assignment Tester
- Composition Theorem

1 Composition

We saw informally in the previous lecture that the composition step was recursion with a twist: the “inner” the verifier needed to perform the following “assignment testing” task: Given an assignment a to the variables of a constraint Φ, check if a is close to a satisfying assignment of Φ. The formal definition follows. We say that two strings x, y are δ-far from each other if they differ on at least δ fraction of coordinates.

Definition 1.1 (Assignment Tester). A q-query Assignment Tester $AT(\gamma > 0, \Sigma_0)$ is a reduction algorithm P whose input is a Boolean circuit Φ over Boolean variables X and P outputs a system of constraints Ψ over X and set Y of auxiliary variables such that

- Variables in Y take values in Σ_0
- Each $\psi \in \Psi$ depends on at most q variables in $X \cup Y$
- $\forall a : X \rightarrow \{0, 1\}$
 - If $\phi(a) = 1$, then $\exists b : Y \rightarrow \Sigma_0$ such that $a \cup b$ satisfies all $\psi \in \Psi$
 - If assignment ‘a’ is δ-far from every a’ such that $\phi(a') = 1$ then $\forall b : Y \rightarrow \Sigma_0$, atleast $\gamma_0 \delta$ fraction $\psi \in \Psi$ are violated by $a \cup b$

We first observe that the above definition is stronger than a regular PCP reduction:

- Φ satisfiable $\implies \exists a \cup b$ that satisfy all constraints in Ψ
• Φ not satisfiable \implies every assignment $a : X \to \{0, 1\}$ is 1-far from any satisfying assignment (since no satisfying assignment exists!), and hence for every $b : Y \to \Sigma_0$, $a \cup b$ violates $\Omega(1)$ fraction of constraints in Ψ. In particular, every assignment $a \cup b$ to the variables of Ψ violates $\Omega(1)$ fraction of the constraints, like in a PCP reduction.

Theorem 1.2 (Composition Theorem). Assume existence of 2-query Assignment tester $P(\gamma > 0, \Sigma_0)$. Then $\exists \beta > 0$ (dependent only on P and $\text{poly}(\text{size}(G))$) such that any constraint graph $(G, \mathcal{C})_\Sigma$ can transformed in time polynomial in the size of G into a constraint graph $(G', \mathcal{C}')_{\Sigma_0}$ denoted by $G \circ P$ such that

- $\text{size}(G') \leq O(1)\text{size}(G)$
- $\text{gap}(G) = 0 \implies \text{gap}(G') = 0$
- $\text{gap}(G') \geq \beta \cdot \text{gap}(G)$

Proof. The basic idea is to apply the AT P to each of the constraints $c \in \mathcal{C}$ and then define the new constraint graph G' based on the output of P. Since the AT expects as input a constraint over Boolean variables, we need to first express the constraints of G with Boolean inputs. For this, we encode the elements of Σ as a binary string.

The trivial encoding uses $\log(|\Sigma|)$ bits. Instead we will use an error correcting code $e : \Sigma \to \{0, 1\}$ where $l = O(\log |\Sigma|)$ of relative distance $\rho = 1/4$, i.e., with the following property:

$$\forall x, y, x \neq y \implies e(x) \text{ is } \rho\text{-far from } e(y)$$

i.e. $x \neq y \implies \Delta(e(x), e(y)) \geq \rho \cdot l$

Let $[u]$ denote the block of Boolean variables supposed to represent the bits of the encoding of u’s label. For a constraint $c \in \mathcal{C}$ on variables u, v of G, define the constraint \tilde{c} on the $2l$ Boolean variables $[u] \cup [v]$ as follows:

$$\tilde{c}(a, b) = 1 \text{ iff } \exists \alpha, \alpha' \in \Sigma \text{ such that the following hold: }$$

$$e(\alpha) = a$$
$$e(\alpha') = b$$
$$c(\alpha, \alpha') = 1.$$

Let $\tilde{c} : \{0, 1\}^{2l} \to \{0, 1\}$ be regarded as a Boolean circuit and fed to a 2-query AT. The output is a list of constraints Ψ_c which can regarded as a constraint graph over Σ_0, call it $(G_c = (V_c, E_c), \mathcal{C}_c)$ (where $[u] \cup [v] \subseteq V_c$), with the two variables in each constraint taking the place of vertices in the constraint graph. To get the new constraint graph G', we will paste together such constraint graphs G_c obtained by applying the 2-query AT to each of the constraints of the original constraint graph.

Formally, the new constraint graph is $(G' = (V', E'), \mathcal{C}')$ over Σ_0 where

- $V' = \cup_{c \in \mathcal{C}} V_c$
- $E' = \cup_{c \in \mathcal{C}} E_c$
• $C' = \bigcup_{c \in C} C_c$

We will assume wlog that $|E_c|$ is the same for every $c \in C$ (this can be achieved by duplicating edges if necessary).

We will now prove that the graph G' obtained by the reduction above satisfies the requirements of the Composition Theorem (??). Clearly, since the size of G' is at most a constant times larger than that of G, since each edge in G is replaced by the output of the assignment tester on a constant-sized constraint, and thus by a graph of constant (depending on $|\Sigma|$) size. Also, G' can be produced in time polynomial in the size of G.

The claim that $\text{gap}(G') = 0$ when $\text{gap}(G) = 0$ is also obvious – beginning with a satisfying assignment $\sigma : V \rightarrow \Sigma$, we can label the variables in $[u]$ for each $u \in V$ with $e(\sigma(u))$, and label the auxiliary variables introduced by the assignment testers P in a manner that satisfies all the constraints (as guaranteed the property of the assignment tester when the input assignment satisfies the constraint).

It remains to prove that $\text{gap}(G') \geq \beta \cdot \text{gap}(G)$ for some $\beta > 0$ depending only on the AT.

Let $\sigma' : V' \rightarrow \Sigma_0$ be an arbitrary assignment. We want to show that σ' violates at least a fraction $\beta \cdot \text{gap}(G)$ of the constraints in C'. First we extract an assignment $\sigma : V \rightarrow \Sigma$ from σ' as follows: $\sigma(u) = \arg \min_a \Delta(\sigma'(\{u\}), e(a))$, i.e., we pick the closest codeword to the label to the block of variables (here we assume without loss of generality that σ' assigns values in $\{0,1\}$ to variables in $[u]$ for all $u \in V$).

We know that σ violates at a fraction $\text{gap}(G)$ of constraints in C. Let $c = c_e \in C$ be such a violated constraint where $e = (u, v)$. We will prove that at least a $\gamma \cdot \rho / 4$ fraction of the constraints of G_c are violated by σ'. Since the edge sets E_c all have the same size for various $c \in C$, it follows that σ' violates at least a fraction $\gamma \cdot \rho / 4 \text{gap}(G)$ of constraints of G'. This will prove the composition theorem with the choice $\beta = \gamma \cdot \rho / 4$.

By the property of the assignment tester P, to prove at least $\gamma \cdot \rho / 4$ of the constraints of G_c are violated by σ', it suffices to prove the following.

Claim: $\sigma'(\{u\} \cup \{v\})$ is at least $\rho / 4$-far from any satisfying assignment to \tilde{c}.

Proof of Claim: Let $(\sigma''(\{u\}), \sigma''(\{v\}))$ be a satisfying assignment for \tilde{c} that is closest to $\sigma'(\{u\} \cup \{v\})$. Any satisfying assignment to \tilde{c} must consist of codewords of the error-correcting code e. Therefore, let $\sigma''(\{u\}) = e(a)$ and $\sigma''(\{v\}) = e(b)$. Moreover, $c(a, b) = 1$. Since σ violates c, we have $c(\sigma(u), \sigma(v)) = 0$. It follows that either $a \neq \sigma(u)$ or $b \neq \sigma(v)$, let us say the former for definiteness. We have

$$\rho \leq \Delta(e(a), e(\sigma(u))) \leq \Delta(e(a), \sigma'(\{u\})) + \Delta(\sigma'(\{u\}), e(\sigma(u))) \leq 2\Delta(e(a), \sigma'(\{u\}))$$

where the last step follows since $e(\sigma(u))$ is the codeword closest to $\sigma'(\{u\})$. Recalling, $e(a) = \sigma''(\{u\})$, we find that at least a $\rho / 2$ fraction of the positions $\sigma'(\{u\})$ must be changed to obtain a satisfying assignment to \tilde{c}. It follows that $\sigma'(\{u\} \cup \{v\})$ is at least $\rho / 4$-far from any satisfying assignment to \tilde{c}.

This completes the proof of the claim, and hence also that of Theorem 1.2. \qed

The composition theorem needed a 2-query AT. We now show that bringing down the number of queries to 2 is easy once we have a q-query AT for some constant q.

3
Lemma 1.3. Given a q-query Assignment Tester AT over $\Sigma_0 = \{0, 1\}, \gamma_0 > 0$, it is possible to construct a 2-query AT over alphabet $\Sigma'_0 = \{0, 1\}^q$ and $\gamma'_0 = \frac{2\gamma_0}{q}$.

Proof. Let the q-query Assignment Tester AT be on Boolean variables $X \cup Y$ (where Y is the set of auxiliary variables), with set of constraints Ψ. Define 2-query AT as follows. The auxiliary variables are $Y \cup Z$ where $Z = \{z_{\psi} | \psi \in \Psi\}$ is a set of variables over the alphabet $\Sigma'_0 = \{0, 1\}^q$, and the set of constraints Ψ' include for each $\psi \in \Psi$ a set of q constraints on two variables: $(z_{\psi}, v_1), (z_{\psi}, v_2), \ldots, (z_{\psi}, v_q)$ where v_1, v_2, \ldots, v_q are the variables on which ψ depends (if ψ depends on fewer than q variables, we just repeat one of them enough times to make the number q). The constraint (z_{ψ}, v_i) is satisfied by (a, b) if ψ is satisfied by a and b is consistent with a on the value given to v_i.

Clearly, if all constraints in Ψ can be satisified by an assignment to $X \cup Y$, then it can be extended in the obvious way to Z to satisfy all the new constraints. Also, if $a : X \rightarrow \{0, 1\}$ is δ-far from satisfying the input circuit Φ to the AT, then for every $b : Y \rightarrow \{0, 1\}$, at least $\gamma_0 \delta$ fraction of $\psi \in \Psi$ are violated. For each such ψ, for any assignment $c : Z \rightarrow \{0, 1\}^q$, at least one of the q constraints that involve z_{ψ} must reject. Thus, at least a fraction $\frac{2\gamma_0}{q}$ of the new constraints reject. \qed

Later on, we will give a 6-query AT over the Boolean alphabet. By the above, this also implies a 2-query AT over the alphabet $\{1, 2, \ldots, 64\}$.

2 Linearity Testing

We will now take a break from PCPs and do a self-contained interlude on “linearity testing”. Consider a function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ as a table of values, the question we now consider is ”Is f linear ?”. Such questions are part of a larger body of research called property testing. First, we define what we mean by a linear function.

Definition 2.1. (Linear functions) A function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ is linear if $\exists S \subset \{1, 2, \ldots, n\}$ such that $f(x) = \bigoplus_{i \in S} x_i$. Or equivalently, f is linear if there exists $a \in \{0, 1\}^n$ such that $f(x) = \bigoplus_{i=1}^n a_ix_i$.

Fact 2.2. The following two statements are equivalent:

- f is linear
- $\forall x, y : f(x + y) = f(x) + f(y)$

For $S \subset \{1, 2, \ldots, n\}$, define $L_S : \{0, 1\}^n \rightarrow \{0, 1\}$ as $L_S(x) = \bigoplus_{i \in S} x_i$. Say $L_s(X) = \sum_{i \in S} X_i$. Given access to the truth table of a function f, linearity testing tries to distinguish between the following cases, using very few probes into the truth table of f:

- $f = L_S$ for some S
- f is “far-off” from L_S for every S
A randomized procedure for Linearity Testing uses 2.2 above. Instead of testing whether $f(x + y) = f(x) + f(y)$ for every pair x, y, we pick one pair (x, y) at random and apply the following test: Is $f(x + y) = f(x) + f(y)$? Thus we look at the value of f on only 3 places. We will explore actual guarantees that this test provides in the next lecture, and go on to connect this with the proof of the PCP theorem.