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In this lecture we will give bounds on circuit size-depths which compute the function ⊕p. More specifi-
cally we will show that a polynomial-sized constant depth AC 0[q] circuit cannot compute ⊕p.

Theorem 17.1 (Razborov,Smolensky). Let p 6= q be primes. Then ⊕p 6∈ AC0[q].

We will prove that S = 2nΩ(1/d)
or d = Ω(log n/ log log S). Note that AC0[q] contains the operations

∧, ∨, ¬ and ⊕q where ⊕q(x1, . . . , xn) =

{
0 if

∑
i xi ≡ 0 (mod q)

1 otherwise.

To prove this theorem we will use the method of approximation introduced by Razborov.

Method of Approximation For each gate g in the circuit we will define a family Ag of allowable ap-
proximators for g. For the operation Opg at gate g, we define an approximate version Õpg such that if

g = Opg(h1, · · · , hk) then g̃ = Õpq(h̃1, · · · , h̃k) ∈ Ag.

We will prove that there are approximators such that Õp(h̃1, · · · , h̃k) and Op(h̃1, · · · , h̃k) differ on only
an ε-fraction of all inputs implying that the output f̃ ∈ Af differs from f on at most εS fraction of all inputs.
We will then prove that any function in Af differs from f on a large fraction of inputs proving that S is large
given d.

Proof of Theorem 17.1. We will prove that ⊕2 6∈ AC0[q] where q is a prime greater than 2. The proof can
be extended to replace ⊕2 by any ⊕p with p 6= q.

The Approximators For a gate g of height d′ in the circuit, the set of approximators Ag will be polyno-

mials over Fq. of total degree ≤ n
d′

2d .

Gate approximators

• ¬ gates: If g = ¬h, define g̃ = 1 − h̃. This yields no increase in error or degree.

• ⊕q gates: If g = ⊕q(h1, . . . , hk), define g̃ = (
∑k

i=1 h̃i)
q−1. Since q is a prime, by Fermat’s little

theorem we see that there is no error in the output. However, the degree increases by a factor of q− 1.

• ∨ gate:
Note that without loss of generality we can assume that other gates are ∨ gates: We can replace the
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∧ gates by ¬ and ∨ gates and since the ¬ gates do not cause any error or increase in degree we can
“ignore” them.
Suppose that g =

∨k
i=1 hi. Choose r̄1, · · · , r̄t ∈R {0, 1}k . Let h̃ = (h̃1, · · · , h̃k). Then

Pr[r̄1 · h̃ ≡ 0 (mod q)] =

{
1 if

∨
i = 1kh̃i = 0, and

≤ 1/2 otherwise.

(This follows because if
∨k

i=1 h̃i = 1 then there exists j such that h̃j 6= 0 in which case if we fix the
remaining coordinates of r̄1, there is at most one choice for the j th coordinate of r̄1 such that r̄1 ·h̃ ≡ 0
(mod q).)

Let g̃j = (r̄j · h̃)q−1 and define

g̃ = g̃1 ∨ · · · ∨ g̃t = 1 −
t∏

j=1

(1 − g̃j).

For each fixed vector of inputs h̃,

Pr[ g̃ 6=
k∨

i=1

h̃i ] ≤ (1/2)t.

Therefore, there exists r̄1, · · · , r̄t such that g̃ and
∨k

i=1 h̃i differ on at most a (1/2)t fraction of inputs.

Also note that the increase in degree from the ĥi to ĝ is (q − 1)t. We will choose t = n
1
2d /(q − 1).

Thus we obtain the following lemma:

Lemma 17.2. Let q ≥ 2 be prime. Every AC[q] circuit of size S and depth d has a degree ((q − 1)t)d

polynomial approximator over Fq with fractional error at most 2−tS.

In particular, setting t = n1/(2d)

q−1 , there is a degree
√

n approximator for the output of the circuit having

error ≤ 2−
n1/(2d)

q−1 S.

In contrast we have the following property of approximators for ⊕2.

Lemma 17.3. For q > 2 prime and n ≥ 100, any
√

n degree polynomial approximator for ⊕2 over Fq has
error at least 1/5.

Proof. Let U = {0, 1}n be the set of all inputs. Let G ⊆ U be the set of “good” inputs, those on which a
degree

√
n polynomial a agrees with ⊕2.

Instead of viewing ⊕2 as {0, 1}n → {0, 1} we consider ⊕′
2 : {−1, 1}n → {−1, 1} where we interpret

−1 as representing 1 and 1 as representing 0. In particular, ⊕′
2(y1, · · · , yn) =

∏
i yi. where yi = (−1)xi .

We get that ⊕2(x1, · · · , xn) = 1 if and only if ⊕′
2(y1, · · · , yn) = −1.

We can see that the xi → yi map can be expressed using a linear map m as follows
m(xi) = 2xi − 1 and since q is odd, m has an inverse map m−1(yi) = (yi + 1)/2

Thus, given a of
√

n-degree polynomial that approximates ⊕2, we can get an approximator a′ of
√

n
degree that approximates ⊕′

2 by defining

a′(y1, · · · , yn) = m(a(m−1(y1), · · · ,m−1(yn))).
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It is easy to see that a′ and ⊕′
2 agree on the image m(G) of G.

Let FG be the set of all functions f : m(G) → Fq. It is immediate that

|FG| = q|G|. (17.1)

Given any f ∈ FG we can extend f to a polynomial pf : {1,−1}n → Fq such that f and pf agree
everywhere on m(G). Since y2

i = 1, we see that pf is multilinear. We will convert pf to a (n +
√

n)/2-
degree polynomial.

Each monomial
∏

i∈T yi of pf is converted as follows:

• if |T | ≤ (n +
√

n)/2, leave the monomial unchanged.

• if |T | > (n +
√

n)/2, replace
∏

i∈T yi by a′
∏

i∈T̄ yi where T̄ = {1, . . . , n} − T . Since y2
i = 1 we

have that
∏

i∈T yi
∏

i∈T ′ yi =
∏

i∈T∆T ′ yi. Since on m(G), a′(y1, . . . , yn) =
∏n

i=1 yi, we get that∏
i∈T yi = a′

∏
i∈T̄ yi on m(G). The degree of the new polynomial is |T̄ |+√

n ≤ (n−√
n)/2+

√
n =

(n +
√

n)/2.

Thus |FG| is at most the number of polynomials over Fq of degree ≤ (n +
√

n)/2. Since each such
polynomial has a coefficient over Fq for each monomial of degree at most (n +

√
n)/2,

|FG| ≤ qM (17.2)

where

M =

(n+
√

n)/2∑

i=0

(ni ) ≤ 4

5
2n (17.3)

for n ≥ 100. This latter bound follows from the fact that this sum consists of the binomial coefficients up to
one standard deviation above the mean. In the limit as n → ∞ this would approach the normal distribution
and consist of roughly 68% of all weight. By n around 100 this yields at most 80% of all weight.

From equations 17.1,17.2 and 17.3 we get |G| ≤ |M | ≤ 4
52n. Hence the error ≥ 1/5.

Corollary 17.4. For q > 2 prime, any AC
0[q] circuit of size S and depth d computing ⊕2 requires S ≥

1
52

n
1
2d

q−1

Proof. Follows from Lemmas 17.2 and 17.3.

This yields the proof of Theorem 17.1.

From Corollary 17.4, we can see that for polynomial-size AC[q] circuits computing ⊕2, the depth d =
Ω( log n

log log n). By the lemma from the last lecture that NC
1 ⊆ AC−SIZEDEPTH(nO(1), O( log n

log log n)) any

asymptotically larger depth lower bound for any function would be prove that it is not in NC
1.

Our inability to extend the results above to the case that q is not a prime is made evident by the fact that
following absurd possibility cannot be ruled out.

Open Problem 17.1. Is NP ⊆ AC0[6] ?

The strongest kind of separation result we know for any of the NC classes is the following result which
only holds for the uniform version of ACC

0. It uses diagonalization.

Theorem 17.5 (Allender-Gore). PERM 6∈ UniformACC
0.


