Lecture 17

Counting is hard for small depth circuits

June 1, 2004
Lecturer: Paul Beame Notes: Sumit Sanghai

In this lecture we will give bounds on circuit size-depths which compute the function \oplus_{p}. More specifically we will show that a polynomial-sized constant depth $A C^{0}[q]$ circuit cannot compute \oplus_{p}.
Theorem 17.1 (Razborov,Smolensky). Let $p \neq q$ be primes. Then $\oplus_{p} \notin A C^{0}[q]$.
We will prove that $S=2^{n^{\Omega(1 / d)}}$ or $d=\Omega(\log n / \log \log S)$. Note that $A C^{0}[q]$ contains the operations \wedge, \vee, \neg and \oplus_{q} where $\oplus_{q}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}0 & \text { if } \sum_{i} x_{i} \equiv 0(\bmod q) \\ 1 & \text { otherwise } .\end{cases}$

To prove this theorem we will use the method of approximation introduced by Razborov.

Method of Approximation For each gate g in the circuit we will define a family A_{g} of allowable approximators for g. For the operation $O p_{g}$ at gate g, we define an approximate version $\widetilde{O p_{g}}$ such that if $g=O p_{g}\left(h_{1}, \cdots, h_{k}\right)$ then $\widetilde{g}=\widetilde{O p_{q}}\left(\widetilde{h_{1}}, \cdots, \widetilde{h_{k}}\right) \in A_{g}$.

We will prove that there are approximators such that $\widetilde{O p}\left(\widetilde{h_{1}}, \cdots, \widetilde{h_{k}}\right)$ and $O p\left(\widetilde{h_{1}}, \cdots, \widetilde{h_{k}}\right)$ differ on only an ϵ-fraction of all inputs implying that the output $\widetilde{f} \in A_{f}$ differs from f on at most ϵS fraction of all inputs. We will then prove that any function in A_{f} differs from f on a large fraction of inputs proving that S is large given d.

Proof of Theorem 17.1. We will prove that $\oplus_{2} \notin A C^{0}[q]$ where q is a prime greater than 2 . The proof can be extended to replace \oplus_{2} by any \oplus_{p} with $p \neq q$.

The Approximators For a gate g of height d^{\prime} in the circuit, the set of approximators A_{g} will be polynomials over \mathbb{F}_{q}. of total degree $\leq n^{\frac{d^{\prime}}{2 d}}$.

Gate approximators

- \neg gates: If $g=\neg h$, define $\widetilde{g}=1-\widetilde{h}$. This yields no increase in error or degree.
- \oplus_{q} gates: If $g=\oplus_{q}\left(h_{1}, \ldots, h_{k}\right)$, define $\widetilde{g}=\left(\sum_{i=1}^{k} \widetilde{h_{i}}\right)^{q-1}$. Since q is a prime, by Fermat's little theorem we see that there is no error in the output. However, the degree increases by a factor of $q-1$.
- \vee gate:

Note that without loss of generality we can assume that other gates are \vee gates: We can replace the
\wedge gates by \neg and \vee gates and since the \neg gates do not cause any error or increase in degree we can "ignore" them.
Suppose that $g=\bigvee_{i=1}^{k} h_{i}$. Choose $\overline{r_{1}}, \cdots, \overline{r_{t}} \in R\{0,1\}^{k}$. Let $\widetilde{h}=\left(\widetilde{h_{1}}, \cdots, \widetilde{h_{k}}\right)$. Then

$$
\operatorname{Pr}\left[\overline{r_{1}} \cdot \widetilde{h} \equiv 0 \quad(\bmod q)\right]= \begin{cases}1 & \text { if } \bigvee i=1^{k} \widetilde{h_{i}}=0, \text { and } \\ \leq 1 / 2 & \text { otherwise }\end{cases}
$$

(This follows because if $\bigvee_{i=1}^{k} \widetilde{h}_{i}=1$ then there exists j such that $\widetilde{h_{j}} \neq 0$ in which case if we fix the remaining coordinates of $\overline{r_{1}}$, there is at most one choice for the $j^{\text {th }}$ coordinate of $\overline{r_{1}}$ such that $\overline{r_{1}} \cdot \widetilde{h} \equiv 0$ $(\bmod q)$.
Let $\widetilde{g_{j}}=\left(\overline{r_{j}} \cdot \widetilde{h}\right)^{q-1}$ and define

$$
\widetilde{g}=\widetilde{g_{1}} \vee \cdots \vee \widetilde{g_{t}}=1-\prod_{j=1}^{t}\left(1-\widetilde{g_{j}}\right)
$$

For each fixed vector of inputs \widetilde{h},

$$
\operatorname{Pr}\left[\widetilde{g} \neq \bigvee_{i=1}^{k} \widetilde{h_{i}}\right] \leq(1 / 2)^{t}
$$

Therefore, there exists $\overline{r_{1}}, \cdots, \overline{r_{t}}$ such that \widetilde{g} and $\bigvee_{i=1}^{k} \widetilde{h_{i}}$ differ on at most a $(1 / 2)^{t}$ fraction of inputs.
Also note that the increase in degree from the $\widehat{h_{i}}$ to \widehat{g} is $(q-1) t$. We will choose $t=n^{\frac{1}{2 d}} /(q-1)$.
Thus we obtain the following lemma:
Lemma 17.2. Let $q \geq 2$ be prime. Every $\mathrm{AC}[q]$ circuit of size S and depth d has a degree $((q-1) t)^{d}$ polynomial approximator over \mathbb{F}_{q} with fractional error at most $2^{-t} S$.
In particular, setting $t=\frac{n^{1 /(2 d)}}{q-1}$, there is a degree \sqrt{n} approximator for the output of the circuit having error $\leq 2^{-\frac{n^{1 /(2 d)}}{q-1}} S$.

In contrast we have the following property of approximators for \oplus_{2}.
Lemma 17.3. For $q>2$ prime and $n \geq 100$, any \sqrt{n} degree polynomial approximator for \oplus_{2} over \mathbb{F}_{q} has error at least $1 / 5$.

Proof. Let $U=\{0,1\}^{n}$ be the set of all inputs. Let $G \subseteq U$ be the set of "good" inputs, those on which a degree \sqrt{n} polynomial a agrees with \oplus_{2}.

Instead of viewing \oplus_{2} as $\{0,1\}^{n} \rightarrow\{0,1\}$ we consider $\oplus_{2}^{\prime}:\{-1,1\}^{n} \rightarrow\{-1,1\}$ where we interpret -1 as representing 1 and 1 as representing 0 . In particular, $\oplus_{2}^{\prime}\left(y_{1}, \cdots, y_{n}\right)=\prod_{i} y_{i}$. where $y_{i}=(-1)^{x_{i}}$. We get that $\oplus_{2}\left(x_{1}, \cdots, x_{n}\right)=1$ if and only if $\oplus_{2}^{\prime}\left(y_{1}, \cdots, y_{n}\right)=-1$.

We can see that the $x_{i} \rightarrow y_{i}$ map can be expressed using a linear map m as follows $m\left(x_{i}\right)=2 x_{i}-1$ and since q is odd, m has an inverse map $m^{-1}\left(y_{i}\right)=\left(y_{i}+1\right) / 2$

Thus, given a of \sqrt{n}-degree polynomial that approximates \oplus_{2}, we can get an approximator a^{\prime} of \sqrt{n} degree that approximates \oplus_{2}^{\prime} by defining

$$
a^{\prime}\left(y_{1}, \cdots, y_{n}\right)=m\left(a\left(m^{-1}\left(y_{1}\right), \cdots, m^{-1}\left(y_{n}\right)\right)\right) .
$$

It is easy to see that a^{\prime} and \oplus_{2}^{\prime} agree on the image $m(G)$ of G.
Let \mathcal{F}_{G} be the set of all functions $f: m(G) \rightarrow \mathbb{F}_{q}$. It is immediate that

$$
\begin{equation*}
\left|\mathcal{F}_{G}\right|=q^{|G|} . \tag{17.1}
\end{equation*}
$$

Given any $f \in \mathcal{F}_{G}$ we can extend f to a polynomial $p_{f}:\{1,-1\}^{n} \rightarrow F_{q}$ such that f and p_{f} agree everywhere on $m(G)$. Since $y_{i}^{2}=1$, we see that p_{f} is multilinear. We will convert p_{f} to a $(n+\sqrt{n}) / 2-$ degree polynomial.

Each monomial $\prod_{i \in T} y_{i}$ of p_{f} is converted as follows:

- if $|T| \leq(n+\sqrt{n}) / 2$, leave the monomial unchanged.
- if $|T|>(n+\sqrt{n}) / 2$, replace $\prod_{i \in T} y_{i}$ by $a^{\prime} \prod_{i \in \bar{T}} y_{i}$ where $\bar{T}=\{1, \ldots, n\}-T$. Since $y_{i}^{2}=1$ we have that $\prod_{i \in T} y_{i} \prod_{i \in T^{\prime}} y_{i}=\prod_{i \in T \Delta T^{\prime}} y_{i}$. Since on $m(G), a^{\prime}\left(y_{1}, \ldots, y_{n}\right)=\prod_{i=1}^{n} y_{i}$, we get that $\prod_{i \in T} y_{i}=a^{\prime} \prod_{i \in \bar{T}} y_{i}$ on $m(G)$. The degree of the new polynomial is $|\bar{T}|+\sqrt{n} \leq(n-\sqrt{n}) / 2+\sqrt{n}=$ $(n+\sqrt{n}) / 2$.

Thus $\left|\mathcal{F}_{G}\right|$ is at most the number of polynomials over \mathbb{F}_{q} of degree $\leq(n+\sqrt{n}) / 2$. Since each such polynomial has a coefficient over \mathbb{F}_{q} for each monomial of degree at most $(n+\sqrt{n}) / 2$,

$$
\begin{equation*}
\left|\mathcal{F}_{G}\right| \leq q^{M} \tag{17.2}
\end{equation*}
$$

where

$$
\begin{equation*}
M=\sum_{i=0}^{(n+\sqrt{n}) / 2}\binom{n}{i} \leq \frac{4}{5} 2^{n} \tag{17.3}
\end{equation*}
$$

for $n \geq 100$. This latter bound follows from the fact that this sum consists of the binomial coefficients up to one standard deviation above the mean. In the limit as $n \rightarrow \infty$ this would approach the normal distribution and consist of roughly 68% of all weight. By n around 100 this yields at most 80% of all weight.

From equations 17.1,17.2 and 17.3 we get $|G| \leq|M| \leq \frac{4}{5} 2^{n}$. Hence the error $\geq 1 / 5$.
Corollary 17.4. For $q>2$ prime, any $\mathrm{AC}^{0}[q]$ circuit of size S and depth d computing \oplus_{2} requires $S \geq$ $\frac{1}{5} 2^{\frac{\frac{1}{2 d}}{q-1}}$

Proof. Follows from Lemmas 17.2 and 17.3.
This yields the proof of Theorem 17.1.
From Corollary 17.4, we can see that for polynomial-size $A C[q]$ circuits computing \oplus_{2}, the depth $d=$ $\Omega\left(\frac{\log n}{\log \log n}\right)$. By the lemma from the last lecture that $\mathrm{NC}^{1} \subseteq \mathrm{AC}-\operatorname{SIZEDEPTH}\left(n^{O(1)}, O\left(\frac{\log n}{\log \log n}\right)\right)$ any asymptotically larger depth lower bound for any function would be prove that it is not in NC^{1}.

Our inability to extend the results above to the case that q is not a prime is made evident by the fact that following absurd possibility cannot be ruled out.
Open Problem 17.1. Is $N P \subseteq A C^{0}[6]$?
The strongest kind of separation result we know for any of the NC classes is the following result which only holds for the uniform version of ACC^{0}. It uses diagonalization.
Theorem 17.5 (Allender-Gore). PERM \notin UniformACC ${ }^{0}$.

