
Lecture 13
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May 13, 2004
Lecturer: Paul Beame

Notes: Tian Sang

Last time we began the proof of the theorem that PCP(poly, poly) = NEXP.

We showed that IMPLICIT-3SAT is NEXP-complete where IMPLICIT-3SAT takes as input a Boolean
formula B defined on m′ +3n+3 variables where m′ = m+ g and B is in the language if and only if there
is an oracle truth assignment A : {0, 1}n → {0, 1} such that

∃A∀w, z, v1, v2, v3 B(w, z, v1, v2, v3, A(v1), A(v2), A(v3)).

(We interpreted w as an m-bit long clause index, z as gate variables, each vi as an n-bit long variable index
in the clause indexed by w, and A(vi) is the truth assignment to variable xvi

.)

Given A, the verification that A satisfies B is in coNPA. This could be viewed as an oracle special case
of the IP = PSPACE protocol. An alternative to this is a sum-check protocol of Lund, Fortnow, Karloff,
and Nisan protocol for #P (given in Sipser’s text and discussed in the next lecture) which instead verifies
the value of ∑

w,z,v1,v2,v3

B(w, z, v1, v2, v3, A(v1), A(v2), A(v3)).

In either case we need to be able to convert B to a low degree polynomial in w, z, v1, v2, v3 over F

and evaluate that polynomial on random variables in F instead of {0, 1}. To do this we needed to be able
to evaluate A on such assignments so we use the fact shown last time that there is a (unique) multilinear
extension of an assignment A : {0, 1}n → F. Let A : F

n → F be this multilinear extension.

Thus the proof table gives values for A, as well as a full tree of all possible executions of the
prover’s strategy for a coNPA (IP = PSPACE style) proof that A is a satisfying assignment to
∀w, z, v1, v2, v3 B(w, z, v1, v2, v3, A(v1), A(v2), A(v3)). Such a tree is given in Figure 13.1.

This would be OK if the proof table correctly gives an A that really is multilinear. However, since the
verifier only will examine a polynomial number of places out of the exponentially many in the proof the
verifier can never be sure that the table truly is multilinear. The verifier will only be able to verify that the
table is close (in Hamming distance) to a multilinear function.

A useful property of the IP = PSPACE protocol (and the #P protocol) is that the final polynomial is
evaluated only once on random inputs chosen by the verifier. Thus on any run, the verifier will only examine
A in 3 places, randomly chosen by the verifier.

If A instead is merely close to a multilinear Â : F
n → F, such that say dist(A, Â) ≤ δ, then with

probability ≥ 1 − 3δ the verifier will only see values on which A and Â agree and thus the additional error
contributed to the acceptance probability of the protocol by the difference between A and Â is at most 3δ.
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exponential size: 2nO(1), A is only checked at leaves

poly length: n
O

(1)

random move

random move

prover move

prover move

Figure 13.1: Proof Tree Corresponding to an Interactive Protocol

So we need to check that dist(A, Â) ≤ δ for some multilinear function Â. This is done using a multi-
linearity test that is a special case of a test that checks whether or not a polynomial has degree at most k in
each variable.

13.1 The Max-degree-k test

Definition 13.1. f : In → F is called max-degree-k iff it can be extended to f : F
n → F, that has degree at

most k in each variable.

Definition 13.2. For u1, . . . , un ∈ In an i-line is a set {(u1, . . . , ui−1, z, ui+1, . . . , un) | z ∈ I)}.

The following test is a generalization to a max-degree-k test of a multilinearity test due to Feige, Gold-
wasser, Lovasz, Safra, and Szegedy that improved on the original multilinearity test used by Babai, Fortnow,
and Lund. The following analysis is from Friedl, Hatsagi, and Shen.

Aligned Line Test: Choose k + 1 distinct elements a1, . . . , ak+1 ∈ I
Repeat t times:

(1) Choose i ∈R {1, . . . , n}

(2) Choose a random point (u1, . . . , un) ∈R |I|n

(3) Check that on the i-line through (u1, . . . , un) at ui, a1, . . . , ak+1, f looks like a de-
gree ≤ k polynomial, if not, reject. That is, check that f on the k + 2 points
(u1, . . . , un), (u1, . . . , ui−1, a1, ui+1, . . . , un), . . . , (u1, . . . , ui−1, ak+1, ui+1, . . . , un) fits a degree k
polynomial evaluated at ui, a1, . . . , ak+1.
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Figure 13.2: Aligned Line Test

In step (3) it would be more natural simply to check f on k + 2 random points on a randomly chosen i-line
but this version is both easier to analyze and uses less randomness.

Definition 13.3. Let P (n, k) = {f : In → F that are max-degree-k } and Pi(n, k) = {f : In → F that has
degree ≤ k in xi}. Observe that P (n, k) =

⋂k
i=1

Pi(n, k).

Definition 13.4. Define d(f, P (n, k)) = Prx∈RIn [f(x) 6= g(x)], and d(f, S) = ming∈S d(f, g).

Lemma 13.1. In a single round of the aligned line test, Pr[test rejects | i is chosen] ≥ d(f, Pi(n, k)).

Proof. For each choice of u1, . . . , ui−1, ui+1, . . . , un, there is a unique degree k polynomial
hu1,...,ui−1,ui+1,...,un(z) that equals f(u1, . . . , ui−1, z, ui+1, . . . , un) for z = a1, . . . , ak+1. The probability
that the test does not reject in step (3) is the probability that for ui ∈R I , f(u1, . . . , ui−1, ui, ui+1, . . . , un) =
hu1,...,ui−1,ui+1,...,un(ui). Combining all these hu1,...,ui−1,ui+1,...,un functions for different values of
u1, . . . , ui−1, ui+1, . . . , un this yields a function h ∈ Pi(n, k) and the probability that the test does not
reject is the probability that on a random −→u = (u1, . . . , un) ∈ In, f(−→u ) = h(−→u ) and this is precisely
1 − d(f, h) ≤ 1 − d(f, Pi(n, k)).

The correctness of the test is based on the lemma above and the following analysis.

Lemma 13.2. For any function f : In → F and any k,

d(f, P (n, k)) ≤ 6(k + 1)
n∑

i=1

d(f, Pi(n, k)) + 2nk/
√

|I|.

We first see how this implies that the aligned line test successfully detects functions that are far from
max-degree k.

Corollary 13.3. If d(f, P (n, k)) ≥ δ ≥ 4nk/
√
|I| then running the aligned test for t = Θ(nk/δ) rounds

will ensure that the test rejects with arbitrarily high constant probability. The total number of queries is
Θ(nk2/δ) and the total number of random bits is Θ( n2k

δ
log |I|).
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Proof. By Lemma 13.1,

Pr[test rejects in a round] ≥ 1

n

n∑

i=1

d(f, Pi(n, k))

n

≥
d(f, P (n, k)) − 2nk√

|I|

6(k + 1)n

≥
δ − 2nk√

|I|

6(k + 1)n

≥ δ

12(k + 1)n
,

by the assumption on δ. Thus the expected number of rounds before the test rejects is at most 12(k +1)n/δ.
Repeating this t = Ω(kn/δ) rounds yields arbitrarily high constant probability of detection. The aligned
line test makes k + 1 queries per round and uses n log2 |I| random bits per round.

Proof of Theorem 12.4. This Corollary is enough to complete the proof that PCP(poly, poly) = NEXP.
Using δ = 1/10, say, and using a field F with I ⊆ F and |I| ≥ 160n2 (since k = 1 in the application),
running the aligned line test for O(n) rounds (which yields O(n) queries and O(n2 log n) random bits is
sufficient to ensure that with probability ≥ 9/10, A is within Hamming distance δ of some multilinear Â.
Using the proof table for a coNP ⊆ IP (oracle) protocol with error at most 1/10 to verify that A satisfies B,
yields total failure probability at most 1/10 + 1/10 + 3δ = 1/2.

We now sketch some of the ideas involved in the proof of Lemma 13.2. The main idea behind all the
low degree tests we will use is the following generalization to multivariate polynomials of the fact that a low
degree polynomial only has a small number of roots.

Lemma 13.4 (Schwartz, Zippel). If p ∈ F[x1, . . . , xn] is a polynomial of total degree ≤ d, and p 6= 0, then
for a1, . . . , an ∈R I ⊆ F, Pr[p(a1, . . . , an) = 0] ≤ d

|I|

Proof. By induction on n. The base case n = 1 follows because the polynomial p has ≤ d roots.

For the induction step, write

p(x1, . . . , xn) =

m∑

i=0

pi(x1, . . . , xn−1)x
i
n.

Since the total degree of p is at most d, the total degree of pi is at most d − i.

Pr[p(a1, . . . , an) = 0] ≤ Pr[pm(a1, . . . , an−1) = 0] + Pr[p(a1, . . . , an) = 0] | pm(a1, . . . , an−1) 6= 0]

≤ d − m

|I| +
m

|I| =
d

|I|

where the bound for the first term follows from the inductive hypothesis applied to pm and the
bound for the second term follows from the application of the base case to the polynomial q(xn) =∑m

i=0
pi(a1, . . . , an−1)x

i
n.

Corollary 13.5. If |I| > 3nk and d(f, P (n, k)) ≤ 1/3 then there is a unique g such that d(f, g) =
d(f, P (n, k))
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Proof. Let g ∈ P (n, k) be a polynomial witnessing the fact that d(f, P (n, k)) < 1/3 so d(f, g) < 1/3.
Suppose h ∈ P (n, k) and h 6= g. The total degree of each of g and h is at most nk. Applying the
Schwartz-Zippel Lemma to g − h we see that d(g, h) ≥ 1 − nk

|I| > 2

3
. Since by the triangle inequality

d(g, h) ≤ d(f, g) + d(f, h) ≤ 1/3 + d(f, h), we obtain that d(f, h) > d(g, h) − 1/3 > 2/3 − 1/3 = 1/3
implying that g is unique.

Let f i ∈ Pi(n, k) be such that d(f, f i) = d(f, Pi(n, k)). Observe that by definition, d(f i, g) =
1

|I|

∑
c∈I d(f i|xi=c, g|xi=c) and that if g ∈ P (n, k) then g|xi=c ∈ P (n − 1, k) for any c. In particular this

means that d(f i, g) ≥ 1

|I|

∑
c∈I d(f i|xi=c, P (n − 1, k)).

The following is an immediate consequence of Corollary 13.5.

Lemma 13.6. If |I| > 3nk and f i ∈ Pi(n, k) and g ∈ P (n, k) agree on at least 2/3 of all i-lines then
d(f i, g) = d(f, P (n, k)) and for all c ∈ I , d(f i|xi=c, g|xi=c) = d(f i|xi=c, P (n − 1, k)) and thus

d(f i, g) =
1

|I|
∑

c∈I

d(f i|xi=c, P (n − 1, k)).

For any k +1 hyperplanes xi = c1, . . . , xi = ck+1, the fraction of all i-lines on which f i and g disagree
is at most

∑k+1

j=1
d(f i

xi=cj
, g) since f and g are in complete agreement on any i-line on which f i and g agree

on all of these hyperplanes. (This follows because f i and g are both degree k polynomials along any i-line;
see Figure 13.3.) For the same reason, on any i-line on which f i and g disagree, they agree on at most k
points.

k+
1 hyp

erplanes

Figure 13.3: Behavior on i-lines related to k + 1-hyperplanes

Moreover, even if there are k +1 hyperplanes xi = c1, . . . , xi = ck+1 on which
∑k+1

j=1
d(f i

xi=cj
, P (n−

1, k)) ≤ 1/3 then letting g1, . . . , gk+1 ∈ P (n − 1, k) be the witnessing polynomials close to f i
xi=cj

then

we can interpolate the gj to a single polynomial g′ ∈ P (n, k) for which f i and g′ agree on a fraction
1−α ≥ 2/3 of all i-lines, d(f i, g′) = d(f i, P (n, k)) ≤ α, and d(f i

xi=c, P (n− 1, k)) = d(f i
xi=c, g

′
xi=c) for

all c ∈ I . Again, on the α fraction of i-lines on which f i and g′ do not completely agree, there are at most k
points of agreement, so in total there are at most an αk/|I| ≤ k/(3|I|) fraction of all points in I n that could
contribute to places where d(f i

xi=c, P (n − 1, k)) < α. By an averaging argument we obtain the following
lemma.

Lemma 13.7. For |I| > 3nk for any µ > 0, either
(a) Prc∈RI [d(f i|xi=c, P (n − 1, k)) ≤ 1/(3k + 3)] ≤ k+1

|I| or

(b) Prc∈RI [d(f i|xi=c, P (n − 1, k)) ≤ d(f i, P (n, k)) − µ] ≤ k
3µ|I| .
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The final argument follows, for suitable µ, using induction by iteratively choosing ci ∈R I and setting
each xi = ci for i = 1, . . . , n. We begin by observing that d(f, P (n, k)) ≤ d(f, f 1) + d(f1, P (n, k))
and expanding d(f 1, P (n, k)). Intuitively, at each step, either (a) holds and except for a k+1

|I| fraction of

choices so far, the average distance between f i and a max-degree k polynomial on the remaining choices is
at least 1/(3k + 3) ≥ d(f, P (n, k))/(3k + 3), or (b) holds and except for a k

3µ|I| fraction of choices so far,

the distance between f i and a max-degree k polynomial is well represented by its error on the remaining
choices (except for an additive error of at most µ). Furthermore, the distance at each choice ci is at most the
sum of the error based on setting one more variable in f i, d(f i, f i+1), and the distance between f i+1 and a
max-degree k polynomial in the remaining variables. Since after all values are set, the function defined on a
single input can be exactly represented by a max-degree k polynomial if (b) always holds then

d(f1, P (n, k)) ≤ nµ +
n−1∑

i=1

d(f i, f i+1) + n
k

3µ|I| ≤ nµ +
n−1∑

i=1

(d(f, f i) + d(f, f i+1)) + n
k

3µ|I|

and thus

d(f, P (n, k)) ≤ 2

n∑

i=1

d(f, f i) + nµ +
nk

3µ|I|

= 2

n∑

i=1

d(f, Pi(n, k)) + nµ +
nk

3µ|I| .

However, if (a) holds at some stage, consider the last stage j in which (a) holds. Except for a (k + 1)/|I|
fraction of inputs, d(f, P (n, k))/(3k + 3) is a lower bound on the distance between f j and a max-degree k
polynomial on the remaining inputs, and thus

d(f, P (n, k))/(3k + 3) ≤ (n − j)µ +
n−1∑

i=j

(d(f, f i) + d(f, f i+1)) + (n − j)
k

3µ|I| +
k + 1

|I|

= 2

n∑

i=j

d(f, Pi(n, k)) + (n − j)µ +
(n − j)k

3µ|I| +
k + 1

|I| .

Strictly speaking, the stages at which (a) holds depend on the choices of the ci so this argument is not fully
rigorous as stated; however, it can be made rigorous by maintaining the sequence of choices made explicitly
and summing appropriately. The bounds in Lemma 13.2 follow.


