
CSE 531: Computational Complexity I Winter 2016

Lecture 18: Interactive Proofs
Mar 7, 2016

Lecturer: Paul Beame Scribe: Paul Beame

1 Background and Motivation

In the 1980’s two notions interactive computation were developed. One, due to Babai, originated in
generalizations of NP to allow more powerful verifiers that include probabilistic verification. The
other, due to Goldwasser, Micali, and Rackoff, originated in cryptography and was a means to the
end of defining zero-knowledge proofs, protocols that allow a party in a cryptographic protocol to
convince another party of some property without revealing additional information. (In this course
we will not discuss the zero-knowledge aspects, however.) The definitions here began research on
the path to the PCP theorem.

2 Interactive Proof Preliminaries

We can view a typical NP algorithm as an interaction between an all-powerful prover P and a
deterministic polynomial-time bounded verifier V . On a shared input x that the verifier wishes to
prove is in L, the prover produces y, a certificate depending on x, sends the certificate y to the
verifier and the verifier accepts if and only if V (x, y) = 1. This can be thought of as one round
of interaction. The exact power of the prover is not important here but everything still must be
verifiable by the deterministic polynomial time machine. So perhaps the amount of interaction is
important? What if we were to allow more rounds of interaction as in the following figure?

Formally, we say that a round of an interactive protocol corresponds an uninterrupted sequence of
communications of a single party. In this picture y1, y2, . . . , y` denote the messages sent by the
prover and z1, z2, . . . , z`−1 denote the messages sent in response by the verifier. We can formally
define the verifier as an algorithm V and the actions of the verifier are given by by z1 = V (x1, y1),
..., z` = V (x, y1, z1, y2, z2, . . . , y`). The prover’s actions can be defined similarly. The (still de-
terministic) polynomial time verifer accepts iff V (x, y1, z1, y2, z2, . . . , y`) = 1 at the end of the
computation. (This is 2`− 1 round computation.)

Lemma 2.1. Interactive proofs with deterministic polynomial-time verifiers yields proofs for pre-
cisely the languages in NP.

1

Prover Verifier

Figure 1: Prover Verifier Interaction

Proof. To see this, notice that for a multi-round proof the prover can determine in advance what
the verifier will say at each response and simply send the entire sequence (y1, z1, . . . , y`) to the
verifier which yields a single round of interaction and thus NP.

In each of the protocols it sufficed for the prover to have the power of NP in order to execute the
protocol. However, our limits on the power of the verifier were what restricted the set of languages
for which we had interactive proofs.

3 Arthur-Merlin Games

In order to have an interesting notion of interactive proofs we need to include randomness on the
part of the verifier. We begin with a simple version of interactive protocols, in which the Prover
(the all-powerful wizard Merlin) is allowed access to all the random coins used by the Verifier (the
not-so smart king Arthur) so far. With this definition it suffices to assume that the strings that are
sebt by the verifier simply contain the random guesses used by Arthur since it is clear that Merlin,
who is all powerful, could easily have computed whatever string Arthur would have computed
based on these random guesses.

The key is that Merlin is unaware of the outcomes of the coin before the Arthur sends them to
him. Notice that Merlin is powerful enough to simulate all possible flips of the coin ahead of
time and therefore can play optimally. The game ends with a polynomial time deterministic ver-
ification based on the input and the message exchanged. We now use ri to denote the i-th ran-
dom string that Arthur sent. The acceptance condition is BPP-like. More precisely, there is a
deterministic polynomial time verifier A and a prover M such that if (r1, y1, . . . , y`) is the se-
quence of communicated values on input x, where each ri is chosen uniformly at random, then
P
r∈{0,1}|x|O(1) [A(x, r1, y1, ..., yk) = 1] > 1 − ε if x ∈ L and for all choices of (y∗1, . . . , y

∗
k),

P
r∈{0,1}|x|O(1) [A(x, r1, y1, ..., yk) = 1] < ε if x /∈ L. We count rounds in terms of half round

2

trips and either party is allowed to go first (so r1 may be omitted).

3.1 Arthur-Merlin Complexity Classes

We denote the complexity class of languages accepted by Arthur-Merlin protocols by an alternating
sequence of letters A and M where the number of letters equals the number of rounds. For example,
AMA = { L | there is a 3 round Arthur-Merlin protocol for L in which Arthur starts}.

Notice that ending at an A is like having a BPP machine to do the verification.

Consider the following view of AM:

L ∈ AM if and only if there is a polynomial-time verifier V , and a polynomial p such that ∀x,

Pr∈{0,1}p(|x|) [∃y ∈ {0, 1}p(|x|) V (x, y, r) = 1] is

{
≥ 1− ε if x ∈ L
≤ ε if x /∈ L

The first quantifier acts like a BPP machine that makes one call to an NP oracle accepting its
answer; so AM = BP · NP. The value of the Arthur-Merlin game is defined to be the proba-
bility that Arthur (the verifier) is convincedm given optimal play by Merlin. We can express the
value of the Arthur-Merlin game on input x using a form of quantifier, namely A as an Averag-
ing quantifier and M as a Maximization quantifier. The value of the above AM protocol is then
Ar ∈ {0, 1}p(|x|)My ∈ {0, 1}p(|x|)y. V (x, y, r) = 1. This use of A and M as the quantifiers is the
source of the names Arthur and Merlin.

Now consider MA. In this case after doing all the nondeterministic work, we get access to a BPP
machine, so we get MA = N · BPP. In quantifiers with a similar verifier the game would have a
value My ∈ {0, 1}p(|x|) Ar ∈ {0, 1}p(x). V (x, y, r) = 1.

Definition 3.1. Define
AM[k] = {L | L has a k round Arthur-Merlin game with Arthur starting}.

Theorem 3.2 (Babai, Babai-Moran). For constant k ≥ 2, AM = AM[k] = MA[k + 1], moreover,
for any t(n). AM[2t(n)] ⊆ AM[t(n)+1].

The general idea is that with some blow-up in size (and failure probability) one can swap quanti-
fiers. In particular AMA quantifiers can be transformed to MAM quantifiers, which can be done in
parallel. Finally, MAM can be converted to AM.

Clearly NP ⊆ MA ⊆ AM. By methods similar to the proof that BPP ∈ ΣP
2 ∩ ΠP

2 , we get

Lemma 3.3. AM ⊆ ΠP
2 and MA ⊆ ΣP

2 ∩ ΠP
2 .

(Indeed the result for MA is immediate from the quantifier form for BPP.)

3

4 Interactive Proofs

The key difference with Arthur-Merlin games is that in this case, instead of being public, the
Verifier’s random string r is hidden from the Prover who can only see the outputs based on r rather
than r itself. We assume that The randomized verifier V runs in polynomial time as a function of
the length of its inputs and that all messages are polynomial-length as a function of |x|.

Again acceptance is BPP-like. It is common to say that the verifier is convinced if it accepts the
interactive computation.

Again we can define a complexity class of these interactions.

Definition 4.1. Define IP[k(n)] to be the set of languages L such that given an x ∈ L there is a
(polynomial-time randomized) protocol with private randomness that takes at most k(n) rounds to
convince the verifier of x’s membership in L.

Definition 4.2. IP = IP[nO(1)].

The following follows immediately along the same lines as the proof that BPP ∈ PSPACE: one
can simply try all possible runs of the protocol and take the average.

Proposition 4.3. IP ⊆ PSPACE.

We will later prove that the reverse inclusion also holds, i.e. IP = PSPACE.

It is somewhat surprising that Arthur-Merlin games and interactive proofs are essentially equivalent
in power.

Theorem 4.4 (Goldwasser, Sipser). IP[k] ⊆ AM[k + 2]

Proof Sketch. The general idea is related to the kinds of arguments in Stockmeyer’s Theorem,
clBPP ∈ ΣP

2 ∩ ΠP
2 , and the Valiant-Vazirani Lemma. In this Arthur’s random bits will be used

to choose random hash functions. The Merlin convinces Arthurs that the Prover would have con-
vinced the Verifier if the protocol would have been run.

The general idea is that Merlin proves that the set of witnesses is large by finding pre-images for
randomly chosen challenge points in the output space of the random hash function that are selected
by Arthur. If the set of witnesses were too small, Merlin would be unable to do this. (Merlin knows
what function the Verifier would have applied to the random bits and so can send the transcript of
the conversation for any fixed hidden random string of the Verifier to prove membership in the
witness set.

4

4.1 Graph Non-isomorphism ∈ IP[2]

Definition 4.5. GRAPH-NON -ISOMORPHISM = {[G0, G1] | G0, G1 are graphs
with |V (G0)| = V (G1) = n and ∀σ ∈ Sn, σ(G0) 6= G1}.

GRAPH-ISOMORPHISM ∈ NP and so GRAPH-NON -ISOMORPHISM ∈ coNP.

4.1.1 Protocol

We will now give a 2 round protocol to decideGRAPH-NON -ISOMORPHISM . Both prover
and verifier have access to G0 and G1.

• (V → P :)

Verifier chooses b ∈R {0, 1}, chooses π ∈R Sn.

Verifier sends π(Gb) to the prover.

• (P → V :) The prover, which is computationally unbounded, determines to which of the two
graphs this one is supposed to be isomorphic, say Gb′ for b′ ∈ {0, 1}. (If the input graphs are
isomorphic to each other the prover can do not better than choose b′ randomly.) The prover
send b′ to the verifer.

• ([Verification:) The Verifier accepts iff b′ = b.

The important thing to notice is that if [G0, G1] is not in L, that is they are isomorphic graphs,
then the prover has exactly a 50-50 chance of guessing which value the verifier chose for c. If
[G0, G1] ∈ L then the prover should never get it wrong.

This acceptance condition yields a probability only of 1/2. We can massage this into the correct
form that we can execute two (or more) copies, either sequentially of in parallel. The verifier
accepts only if the prover answers correctly for each of the graphs. The prover only fools the
verifier with probability 1

4
< 1/3 and this can reduced to 2−k for any k. Notice that it is crucial

that the verifier not have access to the coin flips.

Corollary 4.6. GRAPH-NON − ISOMORPHISM ∈ AM.

5

5 An Interactive Proof for the Permanent: Low Degree Exten-
sions

Theorem 5.1 (Lund-Fortnow-Karloff-Nisan). There is a polynomial length interactive proof for
the predicate PERM(A) = k.

Before we prove this theorem we note a number of corollaries.

Corollary 5.2. There exist polynomial length interactive proofs for all of #P.

Corollary 5.3. PH ⊆ IP

This is surprising, because a constant number of alternations is equivalent to two alternations,
but an unbounded number yields PH. Later, we will prove that there exist interactive proofs for
everything in PSPACE.

Proof of Corollaries. These follow from the easy observation that IP is closed under polynomial-
time (Turing) reduction and by Toda’s theorem.

Remark 5.4. In the journal version of their paper, Lund, Fortnow, Karloff, and Nisan gave an
alternative direct protocol proving Corollary 5.2. This proof is given in full in the text. We present
the protocol for the permanent directly both because it is interesting in its own right and because
the permanent problem motivates the whole approach for these proofs.

Proof of Theorem 5.1. We perform the computation of PERM over some finite field F, where
|F| ≥ n3. We also assume that {1, . . . , n} ⊂ F, although we can remove this restriction by simply
choosing n distinct field elements of F that can substitute for {1, . . . , n}.

Recall the definition of PERM :

PERM(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i)

where aij is the element in the i-th row and j-th column of matrix A and Sn is the set of all
permutations from {1, . . . , n} to itself.

Note that PERM is a multivariate polynomial in the inputs, with total degree n and degree at
most 1 in each variable aij . Furthermore, we can define PERM recursively via the following
self-reduction:

Definition 5.5. Let A(i|j) be the (n − 1) × (n − 1) matrix equal to A with its i-th row and j-th
column removed.

6

By directly expanding the permanent just as one does for the determinant (without the extra bother
of maintaining the signs of the terms), one obtains:

Fact 5.6. PERM(A) =
∑n

`=1 a1`PERM(A(1|`)).

Essentially the term corresponds to fixing σ(1) = `.

To prove that PERM(A) = k, it suffices to prove the values of PERM(A(1|`)) for ` = 1, . . . n.
Of course, a fully recursive algorithm would yield n! subproblems, saving us nothing over direct
computation. Instead, the prover will give one proof that gives allows us to recursively prove values
for all PERM(A(1|`)) via a single proof rather than n separate proofs.

To do this we will use a representation of these values of the permanent as polynomials.

Basic Idea Write B(`) = A(1|`). Then

B(`) =

 b1,1(`) · · · b1,n−1(`)
...

bn−1,1(`) · · · bn−1,n−1(`)

Each bi,j(`) is a function: {1, . . . , n} → F. By interpolation there are degree n − 1 polynomials
pi,j(z) such that pi,j(`) = bi,j(`) for ` = 1, . . . n. Write B(z) for this matrix of polynomials. Then
B(`) = A(1|`) for ` = 1, . . . , n. The key to the interactive proof is that B(z) is also defined
for many values of z that are not in {1, . . . , n} and we can use the simple univariate case of the
Schwartz-Zippel Lemma over a large enough set (the field F itself).

Given this matrix of polynomials B(z),

PERM(A) =
n∑
`=1

a1`PERM(B(`)).

Observe that:

1. PERM(B(z)) is a degree (n− 1)n univariate polynomial over F.

2. Given A, both players can compute what B(z) is.

Interactive protocol to prove that PERM(A) = k

• Prover computes f(z) = PERM(B(z)) and sends the n(n− 1) + 1 coefficients of f to the
verifier.

7

• Verifier checks that
∑n

`=1 a1`f(`) = k. If good, chooses r1 ∈R F and sends it to the prover.

• Prover continues with a proof that PERM(B(r1)) = f(r1).

The proof continues until matrix size is one. In that case the Verifier computes the permanent
directly by checking that the single entry of the matrix is equal to the claimed value for the perma-
nent.

Note that is very important in this protocol ri could take on a value larger than n. In other words,
B(ri) might not be a submatrix of A at all.

Clearly, if PERM(A) = k then the prover can always convince the verifier.

Suppose that PERM(A) 6= k. At each round there is an i× i matrix Ai and an associated claimed
value ki for the permanent of Ai where An = A and kn = k. The Prover can cause the Veri-
fier to accept only if PERM(A1) = k1. Therefore in this case there is some round i such that
PERM(Ai) 6= ki but PERM(Ai−1) = ki−1. Let B(z) be the (i− 1)× (i− 1) polynomial matrix
associated with Ai and f(z) be the degree i(i − 1) polynomial sent by the Prover in this round.
Either f(z) = PERM(B(z)) as polynomials or not.
If f(z) = PERM(B(z)), then

∑n
`=1 a1`f(`) =

∑n
`=1 a1`PERM(B(`)) 6= k, and the verifier

will reject the proof immediately.
If f(z) 6= PERM(B(z)), then f(z)−PERMB(z)) 6= 0 and therefore Prr∈RF[f(r) = PERM(B(r))] ≤
i(i − 1)/|F|. In other words, the probability that the prover can “fool” the verifier in this round
is at most i(i − 1)/|F|. Therefore, the total probability that the Prover succeeds in convincing the
Verifier of an incorrect value is at most

∑n
i=2 i(i− 1)/F < n3/(3|F|) ≤ 1/3. for |F| ≥ n3.

The above proof shows that there are interactive proofs for coNP. A constant number of rounds is
unlikely unless the polynomial-time hierarchy collapses.

The key idea of the above proof was low degree polynomial extension. The matrix of polynomials
B(z) had each term of degree at most (n− 1)2 and so we could test propereties of it for field sizes
that are not much larger than the degree which is still polynomial in size.

6 IP equals PSPACE

In this section we prove the following characterization theorem for IP.

Theorem 6.1 (Shamir, Shen). IP = PSPACE

(Following Shen.) We will prove the hard direction, namely that PSPACE ⊆ IP; the other direction
is almost immediate as noted before.

8

The key idea of this proof will also involve low degree polynomial extensions but we begin with a
problem that is Boolean rather than algebraic so we need also to apply arithmetization.

We construct an IP protocol for TQBF using low-degree polynomial extensions over a small fi-
nite field F. Specifically, we can choose a small field F with n3m ≤ |F| ≤ 2n3m, where m
is the number of 3-CNF clauses and n is the number of variables in the TQBF formula Ψ =
∃x1∀x2 · · ·Qnxnϕ(x1, . . . , xn) where ϕ is a 3-CNF formula with m clauses.

6.1 Arithmetization of Boolean formulas

Create multivariate polynomial extensionds for Boolean formulas as follows:

f ∧ g 7→ Pf · Pg
xi 7→ xi
¬f 7→ (1− Pf)

(f ∨ g) = ¬(¬f ∧ ¬g) 7→ 1− (1− Pf)(1− Pg).

We use the notation Pf ~ Pg as a shorthand for 1 − (1 − pf)(1 − pg). Applying these operations
Pϕ(x1, . . . , xn) is of degree ≤ m in each variable, with a total degree of ≤ 3m.

Continuing this in the obvious way we interpret ∀ and ∃ in terms of ∧ and ∨ and so obtain that

P∀xnf (x1, . . . , xn−1) = Pf (x1, . . . , xn−1, 0) · Pf (x1, . . . , xn−1, 1)

and
P∃xnf (x1, . . . , xn−1) = Pf (x1, . . . , xn−1, 0) ~ Pf (x1, . . . , xn−1, 1).

We want to know if PΨ() = 1. The obvious analog to our proof for PERM has a problem: the
degree of the polynomial doubles at each quantification step and thus the univariate polynomials
we will create will have exponential degree. The solution rests on the fact that our polynomial need
only be correct on inputs over {0, 1}, which yields only two points per variable. Thus a polynomial
of linear degree in each variable will suffice. For this purpose we introduce a new degree reduction
operation Lxi .

Definition 6.2.

PLxif
(x1, . . . , xn) =xi · Pf (x1, . . . , xi−1, 1, xi+1, . . . , xn)

+ (1− xi) · Pf (x1, . . . , xi−1, 1, xi+1, . . . , xn)

We now replace Ψ by the formal sequence

Ψ0 = ∃x1Lx1∀x2Lx1Lx2∃x3Lx1Lx2Lx3 · · ·QnxnLx1Lx2 · · ·Lxnϕ(x1, . . . , xn).

9

While the ∃ and ∀ operators increase the polynomial degree (squaring it), the linearization op-
erations Lxi bring it back down to at most one in each variable. Note that the total number of
quantifiers is only n+ n(n− 1)/2.

We discuss the interactive protocol for PSPACE based on this conversion in Friday’s class.

10

	Background and Motivation
	Interactive Proof Preliminaries
	Arthur-Merlin Games
	Arthur-Merlin Complexity Classes

	Interactive Proofs
	Graph Non-isomorphism IP[2]
	Protocol

	An Interactive Proof for the Permanent: Low Degree Extensions
	IP equals PSPACE
	Arithmetization of Boolean formulas

