
CSE 531: Computational Complexity I Winter 2016

Lecture 17: The Strong Exponential Time Hypothesis
Mar 4, 2016

Lecturer: Paul Beame Scribe: Paul Beame

1 The precise complexity of SAT

For SAT and CIRCUIT -SAT there is an obvious brute force algorithm that requires 2nmO(1)

time where n is the number of variables and m is a measure of the overall input size. How much
better we can seems to depend on the input structure. In the case of kSAT there are some im-
provements.

Theorem 1.1 (Paturi-Pudlak,Schöning,Paturi-Pudlak-Saks-Zane,Hertli). For constants 1 ≤ c ≤ 2,
there are (randomized) algorithms for n variable k-SAT that run in time 2n(1−c/k).

Proof Sketch. The Paturi-Pudlak algorithm is of the following simple format:
Repeat:
Randomly guess an assignment variable-by-variable in random order; in this process, set any vari-
able that is forced because it is the last one remaining in some clause.

Intuitively, a variable is likely to be forced every k-th step so the number of variables that need to
be guessed is only n(1− 1/k) and hence the probability of success is at least 2−n(1−1/k). (Strictly
speaking this argument is only true for USAT , but the analysis can be extended to the general
case.

Schöning’s algorithm is similarly simple:

Repeat:
Randomly guess a total assignment.
Repeat for O(n) steps:

Choose some violated clause and flip a random variable to satisfy the clause.

This yields a biased random walk that still has a significantly better than 2−n probability of finding
a satisfying assignment.

The PPSZ algorithm is an extension of the Paturi-Pudlak algorithm using initial resolution steps
up to a certain constant size. They only showed how to get this to work for USAT . Hertli showed
how to extend their analysis to the general case.

1

These are the best upper bounds known for k-SAT. The fact that the improvements for kSAT and
other NP-complete problems have been at best in the constants in the exponent led Impagliazzo
and Paturi to make the following conjecture.

Exponential Time Hypothesis (ETH) There are constants sk > 0 such that the time complexity
of n variable kSAT is at least 2skn.

By standard reductions it is equivalent to state the ETH solely for k = 3. Moreover, Impagliazzo,
Paturi and Zane showed that ETH implies that a vast number of standard NP-complete require
2Ω(n) time. For example,

Theorem 1.2. ETH implies that 3COLOR requires time 2Ω(n) time.

The reason that this is not obvious is that the standard reduction from 3SAT to 3COLOR converts
a formula with n variables and m clauses to a graph of size O(n + m). A lower bound of 2Ω(n)

for 3SAT will not be 2Ω(n+m) if m is super-linear and all we know a priori is that m is O(n3).
However, one can show that the ETH also holds for k-CNF formulas in which m is only O(n)
which immediately implies the above theorem using the standard reduction. The following is a
later strengthening of a similar lemma that is due to Capalbo, Impagliazzo, and Paturi.

Lemma 1.3 (Sparsification Lemma). For any k-CNF formula ϕ with n-variables and m clauses
and any 0 < ε < 1 there is a 2εnmO(1) time algorithm that can find k-CNF formulas ϕ1, . . . , ϕ2εn

such that ϕ =
∨
i ϕi and each ϕi has m = O((k/ε)kn).

For sufficiently small ε > 0 a general kSAT algorithm can simply produce the various ϕi and test
the satisfiability of each of them. This means that the exponent in the general case is at most εn
larger than in the case of linear size formulas so the ETH applies to formulas for which m is O(n).

The proof of the Sparsification Lemma involves branching based on subsets of variables that occur
significantly more frequently than expected. The proof is a subtle potential argument.

The fact that the best algorithms known for kSAT have exponents that approach n as k increases
led Impagliazzo and Paturi to make the following stronger conjecture.

The Strong Exponential Time Hypothesis (SETH) For every ε > 0 there is a k such that
kSAT requires time larger than 2(1−ε)n. That is, limk →∞sk = 1.

In particular, SETH implies that k(n)-SAT for any function k(n) that is ω(1) requires time 2n−o(n)

and this lower bound also obviously applies directly to CNFSAT .

Unlike the ETH, SETH is not known to imply similar bounds for other NP-complete problems.

2

We will also consider less aggressive versions of SETH that apply to forms of CIRCUIT -SAT .
This is even more believable given how small the improvements are for even slightly more general
classes of circuits. For example, the best known satisfiability algorithms for AC0 circuits is the
following bound due to Impagliazzo, Matthews and Paturi:

Theorem 1.4. Satisfiability for depth unbounded fan-in depth d AC0 circuits can be solved in time
time 2n−O(n/ logd−1 n).

Note that in the case d = 2 corresponds to CNFSAT , and the savings is O(1/ log n). This comes
from the fact that we can essentially assume that clauses have length O(log n) since longer clauses
will be very easy to satisfy.

For ACC0 =
⋃

m AC0[m] circuits, the best savings known, which is due to Williams, is even smaller.

Theorem 1.5. Satisfiability for ACC0 circuits can be solved in time 2n/nc for some constant c > 0.

This satisfiability algorithm is the basis for Williams’ theorem that NEXP 6⊆ ACC0. Indeed, he has
shown that any such improvement for a circuit class immediately implies a similar consequence
for that class of circuits.

2 SETH and Polynomial Time Problems

We will see that SETH has implications for the exact complexity for polynomial-time problems.
The most basic such implication was shown by Williams in 2004.

Orthogonal Vectors The Orthogonal Vectors problem (OVN,m), is the following:
Given y1, . . . , yN , z1, . . . , zn ∈ {0, 1}m, is there a pair (i, j) such that yi · zj = 0 over the integers?
If we view each element of {0, 1}m as a subset of {1, . . . , n}, then orthogonal vectors is an all-pairs
set-disjointness problem that asks whether there is some pair yi and zj that yi and zj are disjoint.

There is an obvious N2m time algorithm for OVN,m. The following theorem shows that SETH
implies that this cannot be significantly improved.

Theorem 2.1. SETH implies that for every δ > 0, there is no O(N2−δ) algorithm for OVN,m for
m = ω(logN).

Note that this is not far from the upper bound which is less than N2 log2 n for some of the values
of m to which it applies.

3

Proof. Given a CNF formula ϕ with m clauses and n variables, let N = 2n/2. Let C1, . . . , Cm
be the clauses of ϕ. Let Y = {x1, . . . , xn/2} and Z = {xn/2+1, . . . , xn}. For each assignment
a ∈ {0, 1}Y define the i-th coordinate of ya by

ya(i) =

{
0 if a satisfies Ci
1 if not.

Similarly each assignment b ∈ {0, 1}Z define the j-th coordinate of zb by

zb(j) =

{
0 if b satisfies Cj
1 if not.

Therefore

∃(a, b) satisfying ϕ⇔ ∃(a, b) ∀i, (a, b) satisfies Ci
⇔ ∃(a, b) ∀i, a satisfies Ci or b satisfies Ci
⇔ ∃(a, b) ∀i, ya(i) = 0 or zb = 0

⇔ ∃(a, b) ya · zb = 0

Therefore y1, . . . , yN , z1, . . . , zN are orthogonal vectors iff ϕ is satisfiable.

Sincem is ω(logN),m is ω(n). Let ` = `(n) = m/nwhich is ω(1). We can then choose k = k(n)
that is ω(1) such that `(n) = m/n is larger than the ratio c(k/ε)k given by the Sparsification
Lemma.

Now if there is an algorithm for OVN,m that has running time O(N2−δ) then, by the above reduc-
tion, we would obtain an algorithm we would obtain an algorithm for k(n)-SAT with running time
O(N2−δ) = O((2n/2)2−δ) = O(2n(1−δ/2)) which contradicts SETH.

Now Orthogonal Vectors did not seem such a critical problem and the connections in this area did
not receive much attention until a 2010 paper by Patrascu and Williams. Since then, and especially
in the last couple of years a number of natural problems have been shown to have the property that
the best known algorithms cannot be improved without violating SETH.

At STOC 2015, Backurs and Indyk showed that one such problem is Edit Distance. Later at FOCS
2015, Abboud, Backurs, and Vassilevska-Williams, and Bringman and Kunneman extended this
to finding the length of the Longest Common Subsequence (LCS), with the latter showing that this
hardness extends to the case of the binary alphabet. LCS is equivalent to a special case of Edit
Distance in which the cost of insertion or deletion is 1 and the cost of substitution is 2. More
formally, given strings A,B ∈ Σ∗ define LCS(A,B) to be the maximum k such that there are
sequences i1 < . . . < ik and j1 < . . . < jk for which Ai1 = Bi1 , . . . , Aik = Bjk .

There are simple natural dynamic programming algorithm for Edit Distance (and hence LCS) that
run in time O(n2) where |A| = |B| and the best algorithms known only shave off a log n factor.

4

Theorem 2.2. SETH implies that LCS over binary strings does not have an O(n2−δ) algorithmn
for any δ > 0.

The proof of this begins by looking at a problem closer to OV . Define LCS-PAIRN,m to be the
problem: Given sequences a1, . . . , aN , b1, . . . , bN ∈ Σm, find the maxi,j LCS(ai, bj). We describe
the reduction from OVN,m to LCS-Pair along the lines given by Bringman and Kunneman.

Lemma 2.3. OVN,m reduces in linear time to LCS-PAIRN,cm for some constant c.

Proof. The general idea is to produce a local substitution of each character of yi and zj according
to different substitutions.

Define the strings 0y = 10011, 1y = 11100, 0z = 11001, and 1z = 00111. Observe that
LCS(0y, 0z) = LCS(0y, 1z) = LCS(1y, 0z) = 4 but LCS(1y, 1z) = 3.

We want to ensure that any LCS for ai and bj involves a character-by-character match of yi and
zj in {0, 1}m. To do this we define codey(yi) to be the string where we replace each 0 or 1 of yi
by the corresponding 0y or 1y and we separate each pair by, say, a string of three 2’s; do the same
for codez(zj) except we use 0z and 1z instead. Define ai = codey(yi) and bj = codez(zj). In
particular, if yi = 001 and zj = 011 then

ai = codey(001) = 100112221001122211100

bj = codez(011) = 110012220011122200111

Therefore the total string length m′ is 8m − 3. It is clear that every LCS of ai and bj and must
match all the 2’s, which means that corresponding coordinates much be matched. If yi and zj
are orthogonal then LCS(ai, bj) = 4m + 3(m − 1) = 7m − 3, which we denote by S. On the
other hand, if yi and zj are not orthogonal then the contribution is only 3 instead of 4 in all the
coordinates with common 1’s and hence LCS(ai, bj) ≤ S − 1. The reduction simply compares
the length of the LCS to S.

To obtain a lower bound for LCS, we will need to concatenate these strings to a single pair of
strings A and B so that the length of the LCS of the whole string will be larger iff there is some
pair of orthogonal yi and zj . To do this we need to control things so that we know the contribution
of each the failed matches also. With the above construction, the more overlapping 1’s, the worse
the value. To fix this we use a slight modification of the above construction that always guarantees
a match of precisely 1 less than the maximum possible.

To do this we add an extra dummy coordinate to the encoding. Define code′y(yi) = code(yi, 0) and
code′z(zj) = code(zj, 1) as well as an extra “easy string” E = code(0m, 1) =. Observe that (yi, 0)
and (zj, 1) are orthogonal iff yi and zj are. Also every vector (zj, 1) has precisely one coordinate

5

with overlapping 1’s with (0m, 1). Let m′′ = 8m+ 5 be the length of code′y(yi). Now define

ai = code′y(yi)3
m′′E

bj = 3m
′′
code′z(zj)3

m′′

Observe that any LCS for the two strings must match one of the two groups of 3’s in bj in its
entirely to the middle group of 3’s in ai and then include an LCS between code′z(zj) and either
code′y(yi) of E. If yi and zj are orthogonal then we get a total contribution of S ′ = m” + S + 7
where S is the value from the above lemma since the extra coordinate gives a total contribution of
7. In the latter case there is precisely 1 segment where the contribution is 3 instead of 4 so we get
m” +S+ 6 = S ′− 1 (there is a contribution of 3 for the matching 2’s and another 3 from the LCS
between 1y and 1z).

We now are in a position to describe the construction of the strings A and B for the proof of the
theorem. The idea will be that the contribution will be to allow an arbitrary rotated alignment of
the combined string of encodings b1, . . . , bN , suitably separated, with the the string of encodings
a1, . . . , aN . This will necessitate two copies of one of the strings to allow for the orthogonal pair
(yi, zj) to have i > j as well as i ≤ j.

Define the strings

A = a14`a24` . . . 4`aN4`a14`a24` . . . 4`aN

B = 4N`b14`b24` . . . 4`bN4N`

where ` is a suitable constant.

The total length of A and B is at most n = O(N log2N) (for m = log2
2N say). Now any LCS

can match at most the (2N − 1)` 4’s in A. It is not hard to see that any optimal LCS will align
b14` . . . 4`bN with some ai4` . . . 4`ai−1 (where we write a0 = aN). If the alignment does not include
an orthogonal pairing then the LCS is at most (2N − 1)` + N · (S ′ − 1). If the alignment does
include an orthogonal pairing them the total LCS is at least S ′′ = (2N − 1)`+N · (S ′ − 1) + 1.

Therefore, OVN,log2
2 n

is reducible in time O(n) = O(N2 log2 n) to LCS on length n strings over
{0, 1, 2, 3, 4}. This proves the theorem except for the reduction of the alphabet size to binary. That
reduction requires a more subtle way to put the various strings in order to replace the symbols
2, 3, 4 by binary strings.

3 LCS is hard even given a very weak SETH

Abboud, Hansen, Vassilevska-Williams, and Williams have a paper at STOC 2016 which shows
that LCS is hard even if very high complexityCIRCUIT -SAT is hard. We sketch a much simpler
proof of their theorem.

6

Theorem 3.1. If there is no 2n−o(n) algorithm to compute satisfiability for

• depth o(n) circuits,

• size 2o(n) Boolean formulas, or

• verifiers given by space o(
√
n) nondeterministic Turing machines,

then binary LCS does not have an O(n2−δ) algorithm for any δ > 0.

We note that by the formula balancing construction we sketched on Monday, the first two classes
are identical. The third follows from the first by the fact that NSPACE(S(n)) ⊆ DEPTH(S2(n)),
which you proved on the midterm.

One key observation is that the previous construction did not make use of the full range of param-
eters possible in constructing A and B. All we needed for the conclusion is that each ai for the
LCS-PAIR problem has size N o(1) rather than restricting it to O(log2N).

Proof Sketch. We use the same framework to convert from LCS-PAIR to LCS so we just give
the description for the ai and bj strings for LCS-PAIR and we don’t discussion the conversion
to binary strings. We use the same separation of the input variables into Y and Z and N = 2n/2

assignments to each player as before. (We will index assignments by α and β so as not to confuse
notation.) We will define aα and bβ recursively. We will define a avα and bvβ for each gate v in
the circuit. We will first produce them as weight formulas and then argue that the weights can
be removed. We will assume wlog that the depth o(n) circuit has been converted to a balanced
formula in which all negations have been pushed to the leaves and each gate at depth k has two
predecessors at depth k − 1.

We create avα and bvβ by induction on k = depth(v). We will construct these so that LCS(avα, b
v
β)

is maximal iff v evaluates to 1 on input (α, β).

Suppose that k = 0. Then u is labelled by a literal `i that is either xi or ¬xi. Set

auα =

{
∗ if i > n/2 or `i(α) = 1

$ otherwise,

and

buβ =

{
∗ if i ≤ n/2 or `i(β) = 1

otherwise,

We will ensure that none of the a strings contain # and none of the b strings contain $. Clearly
both will have a ∗ iff literal `i is set to true on assignment (α, β).

7

Now suppose that u has children v and w at depth k − 1.
If u = v ∧ w then define

auα = Pka
v
αQka

w
αPk

buβ = Pkb
v
βQkb

w
βPk

where Pk and Qk are new symbols of weight Wk = 3k. Clearly any optimal LCS for this pair
must align all of the Pk and Qk and hence will have a maximal LCS iff both LCS(avα, b

v
β) and

LCS(awα , b
w
β) are maximal.

If u = v ∨ w then define

auα = Pka
v
αQka

w
αPk

buβ = Qkb
w
βPkb

v
βQk

In this second case, the optimal LCS must match precisely one Pk and one Qk and include the
LCS of precisely one of the two pairs (avα, b

v
β) or (awα , b

w
β). Hence it will be maximal iff at least

one of the two matches is maximal. (Note that the target weight of the maximal match is different
depending on whether the gate is an ∨ or an ∧ gates, but this doesn’t matter since we know the
target size from the property of the circuit itself. We could alternatively simply use higher weight
in the OR gadget to make them equal. We end up with o(n) different symbols.

The weighted aα and bβ strings are the ones for the output gate of the circuit. We can remove all
the weights easily by replacing a symbol σ with weight w by w consecutive copies of σ without
changing the LCS size. Clearly we can just use entire blocks corresponding the weighted LCS.
The claim is that this is the best we can do. Suppose that we have an LCS that does not match
things blockwise for σ and consider the leftmost partial match of σ between A and B. That, say
matches the i-th element in the block in A to the j-th element in the block in B. This (i, j) match
splits the LCS. Suppose wlog that i ≤ j. Clearly that are at most w−i+1 elements of the LCS that
touch either of these two blocks since there is no match in the block to the left of the (i, j) match
and matches in the LCS cannot cross each other. We can do at least well (obtaining w matched
pairs in the blocks) by locally replacing all of those edges by a full matching of the two blocks.

Note that the total weight for depth k is ck for some constant c, each resulting string has length
2o(n) = N o(1).

8

	The precise complexity of SAT
	SETH and Polynomial Time Problems
	LCS is hard even given a very weak SETH

