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1 Communication Complexity

In (two-party) communication complexity we begin with two players Alice and Bob who receive
inputs x ∈ X and y ∈ Y , respectively. Their goal is to compute some function f on X × Y as
follows: They exchange messages until one of them sends the value f(x, y).

Definition 1.1. Formally, a protocol P is a rooted binary tree with each internal node v labelled
by either “A” or “B” and two out-edges, one labelled 0 and the other labelled 1. Each leaf has an
output label (typically in {0, 1}. There is a function fv associated with node v; if v is labelled A
then fv : X → {0, 1} and if v is labelled B then fv : Y → {0, 1}. The bit sent at node v is sent
by the corresponding player and the value is fv(x) if v has label A and fv(y) if v has label B. The
output P (x, y) of the protocol on input (x, y) ∈ X × Y is the label of the leaf reached on input x.
The cost of the protocol is the height of P .

Definition 1.2. For any function f defined on X × Y , define the deterministic communication
complexity of f ,

Dcc(f) = min{cost(P ) | P (x, y) = f(x, y) for all (x, y) ∈ X × Y }.

Note that this definition allows the players to compute any function based on the information they
have seen; i.e., there is no limit to the computational power of Alice and Bob.

Consider the case that X = Y = {0, 1}n. If we have the PARITY function ⊕2n(x, y) then there
is a very simple protocol: Alice sends the parity b = ⊕n(x) of her inputs to Bob who then returns
the output b⊕ (⊕n(y)). This is only 2 bits communication.

Now consider the EQUALITY function which outputs 1 iff x = y. It seems that best one can do
is have Alice to send x to Bob and then Bob output the answer. This has a total cost of n+ 1 bits.
Indeed, one can see by our definition that this is an upper bound for any Boolean function f with
two n-bit inputs.

We now see how to show that this is the best possible.

Definition 1.3. A (combinatorial) rectangle in X × Y is a set A×B for A ⊆ X , B ⊆ Y .
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Lemma 1.4. If Dcc(f) ≤ c then X×Y can be partitioned into at most 2c rectangles on which the
value of f is constant.

Proof. We prove by induction that the set of inputs that reach each node v of a protocol P on
X × Y is a rectangle. This is certainly true of the root since that is the rectangle X × Y . At
an internal node v with associated rectangle Av × Bv, Alice or Bob, depending the label of v,
computes function fv of either x or y to determine the next bit to send. Therefore for the set of
inputs that reach each of the two children of v, either only the set Av has been restricted, or only
the set Bv has been restricted, resulting in a rectangle in both cases.

Fooling Sets We now give a method to show that a large number of rectangles are needed for a
function f .

Definition 1.5. For a function f : X × Y → {0, 1}, and b ∈ {0, 1}, a b-fooling set for f , is a set
F = {(x1, y1), . . . , (xk, yk)} ∈ X × Y such that for all (xi, yi) ∈ F , f(xi, yi) = b but for every
i 6= j, f(xi, yj) 6= b or f(xj, yi) 6= b.

It is immediate that no two elements of a b-fooling set for f can be in a rectangle on which the
value of f is constant:

Lemma 1.6. Any cover of f−1(b) by rectangles on which f is constant requires at least as many
rectangles as the size of the largest b-fooling set for f .

This immediately gives us a lower bound for EQUALITY . It is easiest to think of this by consid-
ering the matrix Mf for a function f , which is a |X| × |Y | matrix whose (x, y) entry has the value
f(x, y). For EQUALITY , this matrix is the 2n×2n identity matrix and the fooling set F consists
of the 2n diagonal elements (x, x) for x ∈ {0, 1}n. Therefore any partition of X × Y into rectan-
gles on which EQUALITY is constant requires at least 2n rectangles on which EQUALITY is
1. Since such a partition also requires at least one rectangle on which EQUALITY has value 0,
we get that there are at least 2n + 1 rectangles in any partition on which EQUALITY is constant
so the trivial upper bound is optimal:

Lemma 1.7. Dcc(EQUALITY ) = n+ 1.

One very important problem that comes up frequently in applications of communication complex-
ity is the set disjointness problem (which probably would have been better termed set intersection).
Define DISJ : {0, 1}n × {0, 1}n by

DISJ(x, y) =

{
1 ∃i xi = yi = 1

0 otherwise.
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The reason for the terminology is that we can view x and y as characteristic vectors of subsets
of {1, . . . , n} and then DISJ(x, y) = 0 iff x and y represent disjoint sets. (Some people flip
the values 0 and 1 in defining the function. I prefer this format because then DISJ(x, y) =∨n
i=1(xi ∧ yi) is a simple monotone function.)

Lemma 1.8. Dcc(DISJ) = n+ 1.

Proof. We define a 0-fooling set for DISJ as follows: For x ∈ {0, 1}n, let (x) denote the bitwise
complement of x; that is xi = 1 − xi. Let F = {(x, x) | x ∈ {0, 1}n}. Clearly DISJ(x, x) = 0
for x ∈ {0, 1}n. Now consider (x, x), (y, y) for x 6= y ∈ {0, 1}n. Since x 6= y there is some i such
that xi = 0 and yi = 1, or vice versa. Without loss of generality suppose that xi = 0 and yi = 1.
Then xi = 1 and so DISJ(x, y) = 1 6= 0; if we had xi = 1 and yi = 0, thenDISJ(x, y) = 1 6= 0.
Therefore F is a 0-fooling set. Since it has 2n elements and DISJ has at least one rectangle on
which it has value 1, at least 2n+1 rectangles are required. Taking logarithms yields the bound.

There is another method that is useful for proving communication complexity lower bounds.

Theorem 1.9. Dcc(f) ≥ log2 rank(Mf ) where the rank is computed over the rational numbers.

Proof. Given a rectangle R = A × B ⊆ X × Y , define MR to be the 01-matrix such that
MR(x, y) = 1 iff (x, y) ∈ R. We can write the matrix MR = uAv

T
B where uA is the characteristic

vector of the set A and vB is the characteristic vector of the set B. Therefore rank(MR) = 1.

Let Pf be a protocol for f with cost at most c = Dcc(f) andR1(Pf ) be the set of rectangles given
by the protocol that partition f−1(1), the 1’s of f . We have |R1(Pf )| ≤ 2c. Now write

Mf =
∑

R∈R1(Pf )

MR.

Since for any matrices M and M ′, rank(M +M ′) ≤ rank(M) + rank(M ′), we have

rank(Mf ) ≤
∑

R∈R1(Pf )

rank(MR)

=
∑

R∈R1(Pf )

1

=|R1(Pf )| ≤ 2c = 2D
cc(f).

Taking logarithms base 2 yields the theorem.

This gives an alternative proof of a lower bound of n forEQUALITY since the rank of the 2n×2n

identity matrix is clearly 2n.
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Log-rank conjecture It is conjectured that Dcc(f) is at most log2 rankO(1)(Mf ). This is a major
open problem in communication complexity.

Examples are known for which an exponent of log3 6 ≈ 1.63 is required. The best upper bound is
a recent quadratic improvement due to Lovett who showed thatDcc(f) isO(

√
rank(Mf )); Thomas

Rothvoss has a nice short proof of the bound. Note this is still exponentially far from the conjec-
tured upper bound.

The log-rank conjecture would have other important implications also. It would yield good bounds
on the chromatic number of any graph in terms of the rank of its adjacency matrix.

Communication complexity has a vast number of applications. One can think of the immediately
obvious connections to distributed computation, but there are also applications in data structures,
where we can think of Alice holding a query and Bob holding the data structure and reading a
location of the data structure corresponds to sending an address to Bob who returns the memory
contents. It comes up in time-space tradeoffs, where the bits of communication are the contents
of the storage between different points in time. The set disjointness problem has come up in the
context of algorithmic game theory and mechanism design as the basis for showing lower bounds
on implementations of combinatorial auctions. Communication complexity also has applications in
circuit complexity also. The earliest motivation came for proving lower bounds in communication
complexity was in VLSI.

In VLSI, circuit elements and input locations are laid out in rectangular grids. For any rectangular
grid one can partition the input locations precisely in half by making a cut along the short side
of the grid which has length at most

√
A and simulating one side by Alice and the other by Bob.

In each time step, each wire across that grid can only send one bit so the total communication
in T steps is only

√
AT . Using communication lower bounds of Ω(n) yields lower bounds of√

AT = Ω(n), or AT 2 = Ω(n2) which shows that fast chips require a lot of area. For these
problems, our current lower bounds only work if we know which input bits are on each side of the
partition. For EQUALITY and DISJ , partitions that put xi and yi on the same side yield easy
functions.

Instead for these VLSI bounds one looks at best partition communication complexity in which
the protocol gets to choose the partition depending on the function (but not the input values).
Nonetheless, there are many natural functions that are hard under the best partition model, for
example, SHIFTED-EQUALITY (x, y, k) for 0 ≤ k < n = |x| = |y| which has value 1 iff
xi = y(i+k) mod n for all i.

We can also insist on 1-way communication complexity, in which Alice sends one message to
Bob, who computes the answer. This kind of communication is useful in analyzing streaming al-
gorithms or certain representations of Boolean functions called BDDs. For 1-way communication
complexity, it is clear that Alice cannot send the same message on different rows of the matrix Mf

so the number of different rows of Mf is a lower bound. A canonical example of a hard problem
for 1-way communication complexity that is easy in general is the INDEX function, where Alice
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get x ∈ {0, 1}n and Bob gets i ∈ {1, . . . , n} and the requirement is to output xi.

2 Nondeterministic Communication Complexity

We can define the two-party nondeterministic communication complexity N cc(f) in simple form
by having Alice nondeterministically send a message mA consistent with her input x to Bob, who
simply outputs a value depending on mA and his input y. A nondeterministic protocol correctly
computes f : X × Y → {0, 1} iff

f(x, y) = 1⇐ ∃ consistent message mA s.t. Bob outputs 1.

The complexity of the protocol is the maximum number of bits of mA and N cc(f) is the minimum
complexity over all choices of protocol. Similarly, we can define coN cc(f) = N cc(f).

Note that though we only had a 1-way model in this case, it is without loss of generality: If we
had a nondeterministic protocol that allowed more complicated interaction, Alice could simply
nondeterministically guess the entire transcript of the protocol and send it to Bob. Bob would then
simply verify that the transcript is consistent with what he would have done on input y and that he
would have output 1.

Observe that N cc(EQUALITY ) = log2 n + 1 using the following simple non-deterministic pro-
tocol: Alice guesses an index i on which inputs x and y differ and sends (i, xi) to Bob. Bob outputs
1 if and only if yi 6= xi.

For each choice of Alice’s message mA on which a nondeterministic protocol outputs 1, there is
a set A ⊆ X of inputs x that are consistent with message mA and a set B ⊆ Y of inputs y that
are consistent with Bob’s output of 1 given mA. Therefore, if N cc(f) = c then there is a cover
of f−1(1) by at most 2c rectangles on which f has value 1 (1-rectangles). Moreover, given a
cover of f−1(1) by 1-rectangles of size at most 2c, one can obtain a nondeterministic protocol of
complexity at most c by having Alice send the name of a rectangle consistent with her input x to
Bob who checks whether y is also consistent with that rectangle.

Lemma 2.1. N cc(f) = log2 of the minimum number of 1-rectangles in a cover of f−1(1).

Together with Lemma 1.6, this immediately implies:

Corollary 2.2. If f has a 1-fooling set of size k then N cc(f) ≥ log2 k.

Corollary 2.3. N cc(EQUALITY ) = n and coN cc(DISJ) = N cc(DISJ) = n.

On the other hand, we also have

Lemma 2.4. N cc(DISJ) = log2 n.
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Proof. Alice guesses an i such that xi ∧ yi = 1 and sends i to Bob who outputs yi.

Part of the importance of DISJ is that it in some sense characterizes nondeterministic commu-
nication complexity: If N cc(f) = c then there is a cover of f−1(1) by 2c 1-rectanges. We can
reduce f to a disjointness problem on vectors (x′, y′) of 2c input bits each by having x′i = 1 iff x
is consistent with the i-th rectangle and y′i = 1 iff y is consistent with the i-th rectangle. Alice and
Bob can calculate x′ and y′ without interaction.

3 Randomized Communication Complexity

In this extension, Alice and Bob can each make random choices. We can define analoguesBP cc
ε (f)

and Rcc
ε (f) of ordinary randomized acceptance probabilities.

We can see that this can sometimes yield much more efficient protocols even than nondeterministic
ones. For example, consider the following protocol for EQUALITY :

Lemma 3.1. BP cc(EQUALITY ) is O(log n).

Proof. Alice chooses a random prime p with n < p < n2 (at most 2 log2 n bits to represent) and
sends (p, x mod p) to Bob where we interpret x as an integer between 0 and 2n − 1. Bob outputs
1 iff y mod p = x mod p. Clearly this is correct if x = y. An error occurs when x 6= y only if
x ≡ y (mod p), but this can only occur if p divides x − y. Since |x − y| < 2n, there are fewer
than n prime factors of x− y and there are vastly more primes between n and n2 so this has a tiny
failure probability.

Nonetheless, one can show that

Theorem 3.2. BP cc(DISJ) is Ω(n).

The proof is too complicated for us to cover here. The original proof is due to Kalyanasundaram
and Schnitger, but there have been other useful proofs by Razborov and others that simplify the
argument somewhat. This result probably has the most applications of any theorem in communi-
cation complexity and is worth making note of for future reference.

We conclude with an idea of how such results are proved. An important piece to remember is Yao’s
Lemma, which has many applications outside of communication complexity.

As we have described things, if Alice or Bob wants to let the other player know about their random
choice, it costs bits to send them to each other. One can also define a variant in which the random
choices are publically viewable by both players. It turns out that this public variant yields precisely
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same complexity up to an additive O(log n) bound. With public randomness, we can think of
randomized protocols as simply distributions on deterministic protocols.

Definition 3.3. Let µ be a probability distribution on X × Y . Write Dcc
µ,ε(f) to be the minimum

number of bits sent by any protocol P such that Pµ[P (x, y) 6= f(x, y)] ≤ ε.

Lemma 3.4 (Yao’s Lemma, easy part). For any distribution µ on X × Y , BP cc
ε (f) ≥ Dcc

µ,ε(f).

Proof. We can view every c-bit randomized protocol for f with error at most ε as a distribution
on c-bit deterministic protocols, each one given by a fixing of the public randomness. For each
fixed (x, y) ∈ X × Y , the average over the errors of these deterministic protocols is at most ε.
Therefore, if we average over these choices of (x, y) according to µ as well as over the choices of
the deterministic protocols then the average error is at most ε. We can think of this as a big matrix
(not Mf ) with rows indexed by (x, y) and columns indexed by protocols. The average error over
the whole matrix is at most ε, so there is some column whose error is at most ε with respect to f .
Fix this deterministic protocol. It is a protocol witness the fact that Dcc

µ,ε(f) ≤ c, which proves
what we needed to show.
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