
CSE 531: Computational Complexity I Winter 2016

Lecture 15: Unique-SAT, Toda’s Theorem, Circuit Lower Bounds
Feb 29, 2016

Lecturer: Paul Beame Scribe: Paul Beame

1 NP is as easy as Unique Solutions

Definition 1.1. Let USAT ⊆ SAT be the set of formulas ϕ such that ϕ has a unique satisfying
assignment. Let UP be the set of languages A such that there is a polytime TM M and a polynomial
p such that

x ∈ A⇔ ∃!y ∈ {0, 1}p(|x|) (M(x, y) = 1).

Lemma 1.2 (Valiant-Vazirani). There is a randomized polynomial-computable reduction f from
SAT to USAT with the following properties:

[ϕ] ∈ SAT → [f(ϕ)] ∈ USAT] ≥ 1/(8n)

[ϕ] /∈ SAT → [f(ϕ)] ∈ SAT] = 0.

This follows immediately from

Lemma 1.3. If ∅ 6= S ⊆ Fn
2 , then for v1, · · · vn+1 ∈R Fn

2 ,

P[∃k ∈ {2, · · ·n + 1}. |S ∩ {y | v1 · y = v2 · y = . . . = vk · y = 0}| = 1] >
1

8
.

This follows immediately from the following lemma.

Lemma 1.4. Fix a set S ⊆ Fn
2 , then for v1, . . . , vn+1 ∈R Fn

2 ,

(a) if 0n ∈ S, then P[|S ∩ {y | v1 · y = v2 · y = . . . = vn+1 · y = 0}| = 1] > 1
2

(b) if 0n /∈ S, and 2k−2 ≤ |S| ≤ 2k−1 then P[|S ∩ {y | v1 · y = v2 · y = . . . = vk · y = 0}| =
1] > 1

8

Proof. We first show part (a). We always have vi · 0n = 0 for all i. For any x ∈ Fn
2 , if x 6= 0n we

have for any j that P[vj · x = 0] = 1/2. Therefore, since the vj are chosen independently, for
x ∈ S \ {0n},

P[v1 · x = v2 · x = . . . = vn+1 · x = 0] =
1

2n+1
.

1

Thus

P[∃x ∈ S − {0n}, v1 · x = v2 · x = . . . = vn+1 · x = 0] ≤ |S| − 1

2n+1
< 1/2.

It follows that with probability greater than 1/2, 0n is the only element remaining in S ∩ {y |
v1 · y = v2 · y = . . . = vn+1 · y = 0} as required.

We now prove part (b). Now assume that 0n /∈ S and 2k−2 ≤ |S| ≤ 2k−1. Define hk(x) =
(v1 · x, · · · , vk · x) ∈ Fk

2. As in the argument for part (a), for x 6= 0n, P[hk(x) = 0k] = 1/2k.
Suppose now that x 6= y and x, y 6= 0n, Then the condition that hk(x) = hk(y) = 0k is given by 2k
equations whose coefficients are given by the coordinates of x and y. In particular, the constraints
on the vector vi given by the condition that both vj ·x = 0 and vj ·y = 0 are linearly independent and
so both happen with probability 1/4. There since the choices of the vj are independent, P[hk(x) =
hk(y) = 0k] = 1/22k for x, y ∈ S, x 6= y. Let N be the number of elements of x ∈ S such that
hk(x) = 0k. By inclusion-exclusion,

P[N = 1] ≥
∑
x∈S

P[hk(x) = 0k]−
∑

x<y∈S

P[hk(x) = hk(y) = 0k]

=
|S|
2k
−
(
|S|
2

)
1

22k

=
|S|
2k

(
1− |S|

2k+1

)
≥ 1

4
(1− 1

4
) = 3/16 > 1/8

as required.

Lemma 1.2 follows from Lemma 1.3 by replacing formula ϕ(y) by ϕ(y) ∧ (hk(y) = 0k) for a
random choice of k between 2 and n + 1.

This is just a single random call but only succeeds with 1-sided error 1/(8n). By repeated this a lin-
ear number of times as with RP error reduction, we can obtain a reduction with success probability
at least 2/3.

Having a single satisfying assignment is a special case of having an odd number of assignments.

Definition 1.5. For complexity class C, define⊕C to be the set of languages A if and only if there is
a relation R ∈ C and a polynomial p such that x ∈ A⇔ there is an odd number of y ∈ {0, 1}p(|x|)

such that R(x, y) is true. ⊕SAT is the natural complete problem for ⊕P.

Similarly define BP · C to be the set of languages A such that there is a relation R ∈ C and a
polynomial p and constant ε < 1/2 such that the fraction of y ∈ {0, 1}p(|x|) R(x, y) = A(x) is at
least 1− ε.

2

Finally, define R·C to be the set of languages A such that there is a relation R ∈ C and a polynomial
p and ε < 1 such that if x ∈ A then fraction of y ∈ {0, 1}p(|x|) that satisfies R(x, y) is at least
1− ε, and if x /∈ A then no such y satisfies R(x, y).

As outlined in the text, with some extra work beyond the above construction, one can produce a
randomized construction with a single call to ⊕SAT that achieves probability at least 2/3. This
yields the following lemma:

Lemma 1.6. NP ⊆ R · ⊕P.

Toda shows how to extend this to multiple levels of the polynomial-time hierarchy. Because of the
alternation, this can generate errors on both sides.

Lemma 1.7 (Toda). PH ⊆ BP · ⊕P.

As a consequence of this, he showed the following theorem.

Theorem 1.8 (Toda). PH ⊆ P#P = PPERM.

Therefore, though approximate counting can be done in a low level of the polynomial-time hierar-
chy, exact counting is enough to simulate the entire hierarchy.

We do not have time to give the details of the proof which are found in the text. It is convenient to
think of the proof in terms viewing PH as uniform circuits of unbounded fan-in 2nc and constant-
depth.

2 Low level circuit classes

Definition 2.1. Define the circuit complexity class NCk = SIZE-DEPTH(nO(1),O(logk n)) to be
the set of fan-in 2 Boolean functions computable in polynomial size and O(logk n) depth. Let
NC =

⋃
k NC

k.

NCk is the circuit analog of the sequential complexity class SCk = DTIME-SPACE(nO(1), logk n)
and SC =

⋃
k SC

k.

NC stands for “Nick’s class” after Nick Pippenger, in contrast to SC which stands for “Steve’s
class” after Steve Cook. Cook had originally named the class SC, PLOPS. Both were at the Uni-
versity of Toronto and the awkwardness of pronouncing “plops” caused Alan Borodin to introduce
the names informally and the names stuck.

3

On the midterm you showed that NL ⊆ NC2. However, though we know that NL ∈ P∩DSPACE(log2 n),
it is open whether or not NL ∈ SC.

The following shows that NC1 is special.

Theorem 2.2. NC1 = DEPTH(O(log n)) = FORMULA-SIZE(nO(1)).

Proof. For the first equality observe that in any fan-in 2 circuit of depth O(log n) has at most
2O(logn) = nO(1) paths to its inputs and hence has formula size at most nO(1). Therefore the circuit-
size limitation in the definition of NC1 is unnecessary.

To complete the proof it is necessary to show that any formula of size at most nO(1) can be converted
so that it has depth at most O(log n). In general, a formula of polynomial size can have linear depth.
The idea is to recursively re-balance the formula.

First we find a node v in the formula that has between 1/3 and 2/3 of all the leaves of the formula
as descendants. (Start at the output node, follow the child having more leaf descendants until it has
at most 2/3 of the total leaves are descendants of v. Since its parent has more than 2/3 and it was
the larger child, it has more than 1/3 of total.

Let T be the top of the formula and B be the part leading to v. We recursively re-balance T and B
to get T ′ and B′. To build the final formula, we let T ′b for b ∈ {0, 1} be T ′ with input v replaced by
value b. The new balanced formula is (T ′0 ∧ ¬B′) ∨ (T ′1 ∧B′).

Not only do we not know how to prove that some explicit Boolean function is not in NC1, it is an
open question to prove that some explicit Boolean function is not SIZE-DEPTH(n,O(log n)).

Definition 2.3. ACk is the set of Boolean functions computable by circuits of size nO(1) and depth
O(logk n) circuits with unbounded fan-in ∨ and ∧ gates (as well as ¬ gates).

The “A” in AC stands for “alternating”. Since it is easy to simulate an unbounded fan-in gate with
a polynomial number of inputs by a circuit of depth O(log n) we have:

Proposition 2.4. NCk ⊆ ACk ⊆ NCk+1.

Note that AC0 generalizes CNF and DNF formulas. There are interesting (multi-output) functions
in AC0. For example, using carry-lookahead adders we can see that INTEGER-ADDITION ∈
AC0.

We can save a little bit in depth by using unbounded fan-in circuits.

Lemma 2.5. NC1 has polynomial-size unbounded fan-in circuits of depth O(log n/ log log n).

4

Proof. Break up the NC1 circuit of O(log n) depth into O(log n/ log log n) layers of height log log n.
Each fan-in 2 subcircuit of height log log n can depend on at most 2log logn = log n gates (or input
variables) in the next layer. By construction the worst CNF or DNF on m = log n-bit strings is
at most size m2m = n log n. Therefore we can remove any gates in the intermediate levels, with
only a polynomial blow-up in size.

As we have discussed earlier, the best circuit lower bounds known for any explicit Boolean function
over ∧,∨,¬ circuits is 5n − o(n). For general 2-input gates, the best circuit-size lower bound
known was recently improved from 3n− o(n) to 3.18n.

Even for Boolean formulas, the largest size lower bound using ∧,∨,¬ gates is n3−o(1), and for
arbitrary fan-in 2 gates is Ω(n2/ log n).

It is a bit embarassing that these bounds are so small.

We now outline some of the lower bounds known for these low level circuit classes, which are
much larger. The following theorem implies that NC1 6⊆ AC0:

Theorem 2.6 (Furst-Saxe-Sipser, Ajtai). PARITY /∈ AC0

Corollary 2.7. INTEGER-MULTIPLICATION is not in AC0.

In fact, Hästad showed that the above simulation of NC1 by AC0 is tight by proving

Theorem 2.8. Any unbounded fan-in circuit computing PARITY on n bits in depth d requires
size at least 2Ω(n1/(d−1)). In particular, polynomial size requires depth d = Ω(log n/ log log n).

Since ∃ quantifiers correspond to exponentially large unbounded fan-in ∨ gates, and ∀ quantifiers
correspond to exponentially large unbounded fan-in ∧ gates, there is a natural translation from
problems in PH to problems on circuits. Indeed one of the motivations of Furst-Saxe-Sipser was
to define an oracle separating PSPACE from PH.

One can also consider adding unbounded fan-in ⊕ gates to obtain the complexity class AC0[2].
More generally, one can add MODm gates that have Boolean values and take Boolean inputs and
give value 0 iff the sum if the inputs is 0 mod m for any m and define a corresponding circuit
complexity class AC[m].

Theorem 2.9 (Razborov,Smolensky). Let p and q be distinct primes. Then MAJORITY /∈
AC0[p] and MODq /∈ AC0[p].

Let ACC0 =
⋃

m AC0[m]. Until recently, finding any non-trivial lower bounds even for AC[6] was
an open question. In 2011, Ryan Williams showed that

Theorem 2.10. NEXP 6⊆ ACC0.

5

(The weaker precise statement for the case of AC[6] was listed as an open problem in the text.)

The methods for these three lower bounds are very different.

The AC0 lower bounds for PARITY are proven by showing that randomly assigning values to
some of the inputs, known as random restrictions simplify the circuit a lot but do not simplify the
PARITY function.

The Razborov-Smolensky lower bounds for AC0[p] follow by approximating each gate of the cir-
cuit by a low degree multivariate polynomial modulo p.

The lower bound for NEXP for ACC0 follows by a complex diagonalixation and finding a satisfia-
bility algorithm for n-input ACC0 circuits that runs in 2n/nΩ(1) time.

In addition to finding ACC0 lower bounds for Boolean functions in NP some problems at the edge
of circuit complexity

Definition 2.11. TCk is the set of Boolean functions computable by circuits of size nO(1) and
depth O(logk n) circuits with unbounded fan-in MAJORITY gates (or threshold gates). (A
threshold gate is given by a set of integer coefficients a1, . . . , an and a threshold b and outputs
1 iff

∑
i aixi ≥ b.

It is open to prove that some explicit function is in not computable in

• depth 2 circuits of threshold gates of polynomial size.

• depth 3 circuits of MAJORITY gates of polynomial size (which can be simulated by depth
2 threshold circuits efficiently).

The kinds of techniques that have been shown to work for AC0 and AC0[p] likely cannot be used
to prove lower bounds for TC0 because TC0 is thought to contain cryptographic objects called
pseudorandom function generators which are indistinguishable from truly random functions. The
previous methods for proving the lower bounds, which are called “natural proofs” are capable
of distinguishing all functions from the respective classes from truly random functions and so
pseudorandom generation inside the class would be impossible. The recent approach beginning
with that for ACC0 may not be so limited.

6

	NP is as easy as Unique Solutions
	Low level circuit classes

