
CSE 531: Computational Complexity I Winter 2016

Lecture 14: The Complexity of Counting II
Feb 19, 2016

Lecturer: Paul Beame Scribe: Paul Beame

1 #P and #P-completeness

The following theorem which we started to prove last time shows that #P and PP are natural
analogues of each other.

Theorem 1.1. PPP = P#P.

Proof. (Finish)
⊆: Last time. ⊇: We show that any #P function can be computed in PPP. The idea is to use the
PP algorithm in a binary search for the value of the output f(x). Since the output of the function
has only p(|x|) bits for some polynomial p, it suffices to show that one can test “f(x) > N” for
any integer N of polynomially many bits via a call to a PP oracle.

Let M be the polynomial-time TM and p be the polynomial bound such that f(x) = #{y ∈
{0, 1}p(|x|) | M(x, y) = 1}. Define M ′(x,N, y′) for N a length p(|x|) binary string viewed as an
integer and |y′| = p(|x|) + 1 by M ′(x,N, 0y) = M(x, y) and M ′(x,N, 1y) = 1 iff y ≥ N . Note
that there will be precisely 2p(|x|) − N strings y′ = 1y such that M ′(x,N, y′) accepts. Therefore
f(x) > N if and only if there are > N strings y′ = 0y such that M ′(x,N, y′) for a total of > 2p(|x|)

witness strings y′ such thatM ′(x,N, y′) accepts, which is> 1/2 of all strings of the witness length.
The PP oracle will be for the language defined by the machine M ′ with input (x,N) and length
p(n) + 1. It will accept (x,N) precisely when f(x) > N .

Definition 1.2. A function g is #P-complete iff

1. g ∈ #P, and

2. For all f ∈ #P, f ∈ FPg.

Theorem 1.3. #3SAT is #P-complete.

Proof. Clearly #3SAT ∈ #P. Let f ∈ #P. Then there is a polynomial-time TM M and p
a polynomial size bound such that f(x) = #{y ∈ {0, 1}p(|x|) | M(x, y) = 1}. The claim is
that in polynomial time we can convert M and x to a 3CNF formula ϕM,x such that the number

1

of satisfying assignments for ϕM,x is precisely the number of y such that M(x, y) = 1. Such a
reduction that preserves the number of witnesses is called “parsimonious”. It is not hard to see that
the reduction in the proof of the Cook-Levin Theorem fromM,x to the CIRCUIT -SAT instance
CM,x is indeed parsimonious. Moreover, the reduction from CIRCUIT -SAT to CNF formulas
with at most 3 variables per clause by adding extension variables for each gate is also parsimonious
since the gate values are uniquely determined by the input values if all the clauses are satisfied.

The only part of the reduction to 3SAT that was not parsimonious was the part where we added
extra variables to bring the clause size up from 1 or 2 to length 3. These added 1 or 2 extra variables
(which could be re-used in all clauses). When we map clause (u∨ v) to (u∨ v∨a)(x∨ y∨¬a) we
also choose some 3CNF formula containing a that has precisely one satisfying assignment and add
it to ϕ. For example (a∨b∨c)(a∨b∨¬c)(a∨¬b∨c)(a∨¬b∨¬c)(¬a∨b∨c)(¬a∨b∨¬c)(¬a∨¬b∨c).
These 7 clauses rule out every assignment but the assignment that sets a = b = c =true. This
results in a parsimonious reduction to 3SAT as required.

From this we can derive that #HAMILTONIAN -CY CLE is #P-complete and by the proof
from last class we obtain that #CY CLE is also #P-complete so problems in P can have #P-
complete counting versions. One can also show that #2SAT is #P-complete.

Determinant and Permanent The determinant of an n× n matrix A = (aij) is defined by

DET (A) =
∑
σ∈Sn

(−1)sgn(σ)
n∏
i=1

aiσ(i),

where Sn is the set of permutations on {1, . . . , n} and sgn of permutation σ is the number of trans-
positions needed to produce σ. TheDET (A) is efficiently computable using Gaussian elimination.
One can similarly define the permanent of matrix A by

PERM(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i).

The definition of PERM(A) seems simpler than that of DET (A), but it appears to be more
complicated to compute.

Define 01PERM to be the problem of computing the permanent of an input matrixA ∈ {0, 1}n×n.
If A is the adjacency matrix of a bipartite graph with vertex sets U , V with |U | = |V | = n then
each permutation σ for which

∏n
i=1 aiσ(i) = 1 corresponds to a perfect matching from U to V .

Therefore computing 01PERM is equivalent to counting the number of bipartite matchines.

Theorem 1.4 (Valiant). 01PERM is #P-complete.

Corollary 1.5. #BIPARTITE-MATCHINGS is #P-complete.

2

Proof Sketch of the Theorem. Another way to think of an n × n 01-matrix is as the adjacency
matrix of a directed graph with self-loops. For an arbitrary n × n matrix, we can view it as a
weighted directed graph. For a directed graph G, a cycle-cover of G is a union of simple cycles of
G that contains each vertex precisely once. For a weighted, directed graph G, with weight matrix
A, we can view the permanent of A as the total weight of all cycle-covers of G, where the weight
of a cycle-cover is the product of the weights of all its edges. This interpretation corresponds
naturally to the representation of a permutation σ as a union of directed cycles. For example, if

σ =

(
1 2 3 4 5 6
3 4 5 2 1 6

)
∈ S6 then σ can also be written in cycle form as (1 3 5)(2 4)(6) where

the notation implies that each number in the group maps to the next and the last maps to the first.
(See Figure 1.) Thus, for an unweighted graph G, PERM(G) is the number of cycle-covers of G.

1

2 4 6

3

5

Figure 1: Directed graph corresponding to (1 3 5)(2 4)(6)

The general idea si reduce #3SAT to 01PERM in two steps. Given any 3CNF formula ϕ, in the
first step, we create a weighted directed graph G′ (with small weights) such that PERM(G′) will
represent the number of satisfying assignments for ϕ multiplied by some factor depending on the.
the number of clauses in ϕ. In second step, we convert G′ to an unweighted graph G such that
PERM(G′) = PERM(G) modM , for some M with only have polynomially many bits. We
will only sketch the general idea of the argument and will not give any details of the second step.

The construction of G′ from ϕ is via gadgets. The VARIABLE gadget is shown in Figure 2. All
the edges have unit weights. Notice that it contains one dotted edge for every occurrence of the
variable in ϕ. Each dotted edge will be replaced by connecting two vertices of a subgraph which
we described later. Any cycle-cover either contains all dotted edges corresponding to a positive
occurrence (and all self-loops corresponding to negative occurrence) or vice versa.

The CLAUSE gadget is shown in Figure 3. It contains three dotted edges corresponding to three
variables that occur in that clause. All the edges have unit weights. This gadget has the property
that

1. in any cycle-cover, at least one of the dotted edges is not used, and

2. for any non-empty subset S of the dotted edges there is precisely one cycle-cover of the
gadget that includes all dotted edges but those in S. (See Figure 4.)

Now, given any clause C and any literal x contained in it, there is a dotted edge (u, u′) in the
CLAUSE gadget for the literal and a dotted edge (v, v′) in the appropriate side of VARIABLE

3

gadget for the clause. These two dotted edges are replaced by an XOR gadget shown in Figure
5. This gadget has weights on some edges including some negative weights (all other edges have
weight 1). The negative edges will be replaced in the final construction by weight M − 1 since the
result is being taken modulo M .

The XOR gadget has the property that the total contribution of all cycle-covers using none or both
of (u, u′) and (v, v′) is 0. For cycle-covers using exactly one of the two, the gadget contributes a
factor of 4.

There are 3m XOR gadgets. As a result, every satisfying assignment of truth values to ϕ will
contribute 43m to the cycle-cover and every other assignment will contribute 0. The details are
found in the text.

The fact that the permanent and determinant have similar representations, but one is computable
in polynomial time and the other is #P-complete has been the inspiration for approaches to sepa-
rating complexity classes. In particular, Mulmuley, in an approach called “geometric complexity
theory” has suggested using extensions of the methods of algebraic geometry to prove that these
two problems cannot have similar complexity.

2 Approximating #P functions

Though it isn’t clear how to compute the number of satisfying assignments exactly seems hard
compared to BPP or PH, it turns out that we can approximate the number of satisfying assignments
using properties of hash functions.

Theorem 2.1 (Stockmeyer’s Theorem). Let f ∈ #P. For any ε(n) that is 1/nO(1) there is a
function g ∈ FPΣ2SAT such that for any x,

(1− ε(|x|))f(x) ≥ g(x) ≤ (1 + ε(|x|)f(x).

Proof. Let f ∈ #P and M and p be the associated polynomial-time TM and bounding function.
Let m = p(|x|) and S be the set of y ∈ {0, 1}m such that M(x, y) = 1. First, suppose that
|S| ≤ 2k−1. Define h : {0, 1}m → {0, 1}k by h(x) = A · x for A an m× k Boolean matrix taken
modulo 2.

Let z ∈ S. Then for a randomly chosen h, Ph[∃y 6= z ∈ S. h(y) = h(z)] ≤ |S|/2k ≤ 1/2.

Then for a randomly and independently chosen H = {h1, . . . , hk},

PH [∃y 6= z ∈ S ∀hi ∈ H. hi(y) = hi(z)] =
k∏
i=1

Phi [∃y 6= z ∈ S. hi(y) = hi(z)]

≤ 2−k

4

It follows that

PH [∃z ∃y 6= z ∈ S ∀hi ∈ H. hi(y) = hi(z)] ≤ |S|/2k ≤ 1/2.

Therefore
PH [∀z ∀y 6= z ∈ S ∃hi ∈ H. hi(y) 6= hi(z)] ≥ 1/2.

Therefore if |S| ≤ 2k−1, then

∃H∀y, z ∈ S
k∨
i=1

(hi(y) 6= hi(z)).

On the other hand, suppose that S ≥ k2k. Suppose that the above sentence is true. Each y ∈ S
gets mapped to at least one unique pair (i, hi(y)) that is not mapped to by any other element of S.
There are at most k2k choices of such a value so if this is true then |S| ≤ k2k. Equivalently, if
f ≤ 2k−1 then

∃H∀y, z ∈ {0, 1}m(M(x, y) = 1) ∧ (M(x, z) = 1) ∧ (y 6= z) ∧
k∨
i=1

(hi(y) 6= hi(z)).

and it is false if f > k2k.

In order to get a 1 ± ε approximation to f , we first compute g which for some polynomial ` that
counts the number of inputs (y1, . . . , y`) ∈ ({0, 1}m)` such that M(x, y1) = . . . = M(x, y`) = 1.
We can then use the appropriate k to obtain the approximation as in the above construction for
g.

5

true

false

#arrows =
#positive occurances

#arrows =
#negative occurances

Figure 2: The VARIABLE gadget

6

Figure 3: The CLAUSE gadget

Figure 4: The cycle-covers of the CLAUSE gadget

7

v’

u

a d

u’

v

c

3

2

b

−1

−1

−1

Figure 5: The XOR gadget

8

	#P and #P-completeness
	Approximating #P functions

