
CSE 531: Computational Complexity I Winter 2016

Lecture 13: The Complexity of Counting
Feb 17, 2016

Lecturer: Paul Beame Scribe: Paul Beame

We first begin with a bit of unfinished business.

1 Proof of Lauteman’s Lemma

In the proof of BPP ⊆ ΣP
2 ∩ ΠP

2 in last class, we used the following lemma we need to prove. It
allows us to distinguish between very small and very large sets.

Lemma 1.1. Let S ⊆ {0, 1}m.

1. Let k = dm
n
+ 1e. If |S|/2m ≥ 1− 2−n then ∃u1, . . . , uk ∈ {0, 1}m such that

k⋃
i=1

(S ⊕ ui) = {0, 1}m.

2. If k < 2m and |S|/2m ≤ 2−n then ∀u1, . . . , uk ∈ {0, 1}m such that

k⋃
i=1

(S ⊕ ui) 6= {0, 1}m.

Proof. Part 2 is easier to prove first: Since |S|/2m ≤ 2−n and |S ⊕ ui| = |S|,
we have |

⋃k
i=1(S ⊕ ui)| ≤ k|S| ≤ k2m−n < 2m since k < 2n which implies that

⋃k
i=1(S ⊕ ui) 6=

{0, 1}m.

For part 1, we use the probabilistic method: In particular, we show that if we choose u1, . . . , uk

uniformly and independently from {0, 1}m, then the probability that there is some r in {0, 1}m that
is not in

⋃k
i=1(S⊕ui) is < 1. Hence, there must be some contribution due to a choice of u1, . . . , uk

where all elements of {0, 1}m are covered, and that choice proves the Lemma.

Fix r ∈ {0, 1}m. We have r ∈ S ⊕ ui if and only if ui ∈ S ⊕ r. Since ui is uniformly chosen, and
|S ⊕ r| = |S| ≥ 2m(1− 2−n), we have

Pui
[r /∈ S ⊕ ui] ≤ 2−n.

1

Therefore, since the choices of the ui are independent and k = dm/n+ 1e,

Pu1,...,uk
[r /∈

k⋃
i=1

(S ⊕ ui)] ≤ 2−kn ≤ 2−m−n.

Therefore, by a union bound,

Pu1,...,uk
[∃r ∈ {0, 1}m. r /∈

k⋃
i=1

(S ⊕ ui)] ≤ 2m · 2−m−n = 2−n < 1,

which is what we wanted to show.

2 Functions and the Complexity of Counting

Thus far, though we have used function computation as part of the notions of reduction, all the
definitions of complexity classes we have used have been of languages or, equivalently, Boolean
functions.

Definition 2.1. Define FDTIME(T(n)) to be the set of functions f : {0, 1}∗ → {0, 1}∗ (or, alter-
natively, f : {0, 1}∗ → N) that are computable by a TM M with running time O(T (n)).

Then FP =
⋃

k FDTIME(nk).

We can similarly define FDSPACE(T(n)) (recalling that the output tape is not included in the space
bound) and FPSPACE =

⋃
k FDSPACE(nk).

We will be interested in function computation problems involving counting.

Definition 2.2. Let #P (usually pronounced “sharp P”, or occasionally “number P”) be the set
of functions f : {0, 1}∗ → N for which there is a polynomial time TM M and a polynomial p such
that f(x) = #{y ∈ {0, 1}p(|x|) |M(x, y) = 1}.

#P is a complexity class that represents many useful natural problems. In particular it includes
many important problems related to probabilistic inference.

Lemma 2.3. FP ⊆ #P ⊆ FPSPACE

Proof. Along the same lines as the arguments for NP and BPP, it is immediate that #P ⊆
FPSPACE by simply trying all possible y and keeping track of a count. To see that FP ⊆ #P,
observe that we can modify any polynomial-time TM that produces an integer N = f(x) as out-
put, to one that has an auxiliary input y of some polynomial length larger than the number of bits
needed to encode N and, instead of outputting N , accepts all strings y with y < N . (Here we view
bianry strings and natural numbers as interchangeable.)

2

A particularly natural problem in #P is #SAT , the problem of counting the number of satisfying
assignments for a Boolean formula ϕ. The following is immediate:

Proposition 2.4. If #SAT ∈ FP then P = NP.

We can also define counting problems associated with other NP problems. Here, if we have a
language A ∈ NP we will select a “natural” verifier VA for A, and define #A ∈ #P to be the
counting problem associated with that natural verifier.

We now see that even a problem A ∈ P can have an associated counting problem that is hard.

Define CY CLE = {[G] | G is an directed graph containing a directed cycle} ∈ P.
This is not a natural NP formulation of the problem since there are cycles of arbitrary length and
an NP formulation would require a bounded length witness. One can of course convert this to only
ask about cycles of length at most n but if we look at the usual BFS and DFS algorithms, we see
that they not only find cycles, they find simple cycles, those that do not contain repeated vertices
(which are of course of length at most n. So we now think of

CY CLE = {[G] | ∃ a simple directed cycle C ∈ G}.

With this formulation, we define #CY CLE by

#CY CLE([G]) = #{C | C is a simple directed cycle in directed graph G}.

Surprisingly, we have:

Theorem 2.5. If #CY CLE ∈ FP then P = NP.

Proof. The proof is by reduction from HAMCY CLE. We will show that given a directed
graph G, we can produce a polynomal-time mapping from G to a directed graph G′ such that
#CY CLE([G′]) will be larger than some known value depending only on the number n of ver-
tices of G iff G contains a directed Hamiltonian cycle. In particular, this fixed value will be
2n

2dlog2 ne ≥ nn2 .

The mapping is as follows: Let k = ndlog2 ne. For each edge (u, v) in G, we add 2k new in-
termediate vertices a1, . . . , ak, b1, . . . , bk (different for each (u, v) pair) and directed edges (u, a1),
(u, b1), (ak, v), (bk, v), as well as edges (ai, ai+1), (ai, bi+1), (bi, ai+1), and (bi, bi+1). The key
points are that there are 2k different paths in this gadget from u to v and the construction is poly-
nomial time.

Clearly, by construction any cycle in G′ consists of a cycle in G with each of its edges replaced by
one of these new paths. Also by construction, any original cycle in G of length ` corresponds to
(2k)` cycles in G′.

3

There are < n` simple cycles in G, so the total count of cycles in G′ based on simple cycles of
length at most n− 1 in G is less than

n−1∑
`=2

n`(2k)` < 2 · nn−1(2k)n−1

since this is a geometric series with ratio > 2 and is therefore at most twice its largest term.

On the other hand, the contribution from a single Hamiltonian cycle is

(2k)n = 2k(2k)n−1 ≥ 2n log2 n(2k)n−1 = nn(2k)n−1,

which is strictly larger than the total contribution from all shorter cycles. (2k)n = 2kn ≥ 2n
2 log2 n =

nn2 .

We now look at the relationship between this counting class of functions and a class of decision
problems based on probabilistic algorithms that have success probability barely larger than 1/2.
These have success probability that is not “bounded”.

Definition 2.6. Define PP (probabilistic polynomial time) to be the set of languages A for which
there is a polynomial time TM M and a polynomial p, such that

x ∈ A⇔ Pr∈{0,1}p(|x|) [M(x, r) = 1] > 1/2.

Note that for PP, unlike BPP, the success probability might be as small as 1/2 + 1/2p(|x|) which
would not be distinguishable from failure with only a polynomial number of samples.

In relating functions computable in #P to each other and to other complexity classes we need a
notion of efficient reduction. Mapping reductions such as ≤P don’t make sense since the answer
is not 0 or 1. Even polynomial-time Turing reductions ≤T

P as we defined them do not quite work
since the oracle answer came in the form of the yes or no answer state.

Definition 2.7. A function oracle TM M ? is a TM with a special query tape, special query and
answer states, well as a special answer tape. The computation of M ? with oracle f , denoted M f

behaves like an ordinary TM except when it enters the query state. At this point in one step the
function f is applied to the contents of the query tape, the value f(x) appears on the answer tape
and the state switches to the answer state.

Based on above definition of function oracles we can define DTIMEf(T(n)), FDTIMEf(T(n)), P f ,
FP f , etc.

Definition 2.8. Let C be a class of decision problems or FC be a class of functions. We define
P C =

⋃
A∈C P

A, P FC =
⋃

f∈FC P
f , and FPFC =

⋃
f∈FC FPf .

4

The following theorem shows that #P and PP are natural analogues of each other.

Theorem 2.9. PPP = P#P.

Proof. (Start)
⊆: Let A be any PP language. We show that we can compute A ∈ P#P and hence replace any
PP oracle call. Let M be the polynomial-time TM and p be the polynomial bound such that
x ∈ A ⇔ Pr∈{0,1}p(|x|) [M(x, r) = 1] > 1/2. The acceptance condition is precisely equivalent to
#{r ∈ {0, 1}∗ | M(x, r) = 1} > 2p(|x|)−1. The function on the left is obvisouly computable in
#P. The algorithm for A simple compares this quantity to 2p(|x|)−1 and accepts iff it is larger.
⊇: Next class.

5

	Proof of Lauteman's Lemma
	Functions and the Complexity of Counting

