
CSE 531: Computational Complexity I Winter 2016

Lecture 12: Randomization and Complexity II
Feb 12, 2016

Lecturer: Paul Beame Scribe: Paul Beame

1 Polynomial Identity Testing continued

Last time we proved the following lemma:

Lemma 1.1 (Schwartz,Zippel). Let p(x1, . . . , xn) be a non-zero polynomial over Z (respectively
F) of (total) degree ≤ d. Let S ⊆ Z (respectively F) be a finite set. If a1, . . . , an are independently
and uniformly chosen from S then

Pa1,...,an [p(a1, . . . , an) = 0] ≤ d

|S|
.

We now complete the proof the following theorem, which introduces additional algorithmic ideas
that are broadly useful.

Theorem 1.2. PITZ, ZEROPZ ∈ coRP. The same holds true for sufficiently large finite fields,
for example the integers modulo a prime q.

Proof. The general idea of the coRP algorithm is to randomly choose elements a1, . . . , an from a
succiently large S and evaluate the input circuit. If the circuit evaluates to a non-zero value then the
output the ZEROP algorithm should reject since the polynomial is surely nonzero. Conversely,
if the polynomial is nonzero, then there is a good chance that it will not evaluate to 0 by the
Schwartz-Zippel Lemma.

It remains to make this work: If the circuit size of C is at most m then C has at most m multipli-
cation gates. Each such gate can at most double the degree of the output polynomial. (The + and
− gates do not change the maximum degreee.) Therefore, the circuit has degree d ≤ 2m. Hence
choosing S of size 2m+2 will be sufficient, e.g. S = {0, 1, . . . , 2m+2 − 1}. If we are in the case
of the finite field with prime q of size not much larger than 2m+2, then we can compute each gate
of the circuit and then take the value modulo q at each step, so the circuit evaluation is polynomial
time and will have failure probability at most 1/4.

However, over the integers Z it becomes much more difficult. Each ai takes m+2 bits and a degee
d = 2m monomial in the ai will require more than 2m(m + 2) bits, which is too many to write
down. Even a polynomial in the ai of degree 2m will not need many more bits.

1

Fingerprinting To do this we need to use a technique called fingerprinting introduced by Rabin.
The idea is to choose 4m random numbers k1, . . . , k4m of 2m bits each and evaluate C(a1, . . . , an)
by taking each gate modulo ki for all i. Clearly this is a polynomial-time computation. The
algorithm will accept unless some computation of C modulo ki produces a non-zero value.

For correctness, observe that
C(a1, . . . , an) ≡ 0 mod k1, · · · , C(a1, . . . , an) ≡ 0 mod k4m if and only if

C(a1, . . . , an) ≡ 0 mod lcm(k1, . . . , k4m),

where lcm stands for “least common multiple”.

Fact 1.3. P[lcm(k1, . . . , k4m) < 22
2m
] ≤ 1/16

This follows by the Prime Number Theorem. (In fact, roughly 1/2m of the numbers ki is in fact a
prime.)

Hence the total probability of failure is the probability that the a1, . . . , an chosen from S were a
bad choice is at most 1/4, plus the probability that the k1, . . . , k4m are bad, which is at most 1/16
yielding failure at most 1/4 + 1/16 < 1/3 as required.

2 Reducing Errors

The following shows that the definitions of randomized classes are not especially sensitive to the
error parameters.

Theorem 2.1. Let T : N→ N.

1. If δ : N→ [0, 1] then

(a) RTIME1−δ(T(n)) ≤ RTIME1/3(T(n)/δ).

(b) BPTIME1/2−δ(T(n)) ≤ BPTIME1/3(T(n)/δ
2).

2. If K : N→ N then

(a) RTIME1/3(T(n)) ≤ RTIME2−K(K · T(n)).
(b) BPTIME1/3(T(n)) ≤ BPTIME2−K(K · T(n)).

Proof. For the 1(a) and 2(a), the algorithm is simply to run the RTIME algorithm with the larger
error multiple times with independent random choices and accept iff any of the runs accepts. In
that case, 2/δ runs of an algorithm with error 1− δ will fail with probability at most (1− δ)2/δ ≤

2

e−2 < 1/3 since (1 − x)x ≤ e−1 for all real values x. K runs at error 1/3 these will reduce the
error 1/3 to error 3−K which suffices.

For 1(b) and 2(b), since errors can occur in either direction, the algorithm is to run the BPTIME
algorithm with the larger error multiples times with independent random choices and to output the
majority of the answers computed. The bounds now follow by Chernoff bounds on the tails of
binomial distributions (sums of independent Bernoulli trials). These give bounds that decay by the
square of the difference between the threshold (1/2) to the probabilities and hence yield the larger
dependence on δ in the bound.

Corollary 2.2.
BPPε(n) = BPP for 2−n

O(1) ≤ ε(n) ≤ 1/2− n−O(1).
RPε(n) = RP for 2−n

O(1) ≤ ε(n) ≤ 1− n−O(1).

3 Randomization versus Non-uniformity

Theorem 3.1 (Adleman,Bennet-Gill). BPP ⊆ P/poly.

Proof. Let A ∈ BPP. By the corollary, BPP = BPP2−2n . Therefore there is a polytime TM MA

and a polynomial p such that

∀n ≥ 0 ∀x ∈ {0, 1}n Pr∈{0,1}p(n) [MA(x, r) 6= A(x)] ≤ 2−2n.

Fix n. Define the indicator predicate 1MA(x,r) 6=A(x) on (x, r) to have value 1 if MA(x, r) 6= A(x)
and 0 otherwise; i.e. this is the error predicate.

We can think of a matrix with rows indexed by elements x ∈ {0, 1}n and columns indexed by
elements r ∈ {0, 1}p(n) and with (x, r) entry equal to the value of the predicate. The correctness of
the algorithm implies that each row has at most a 2−2n fraction of entries equal to 1, and hence the
whole matrix has at most a 2−2n fraction of 1 entries. This means that there must be some column
with at most a 2−2n fraction of 1 entries.

(Deriving this in formulas we have,

∀x ∈ {0, 1}n Er∈{0,1}p(n)1MA(x,r)6=A(x) ≤2−2n

So Ex∈{0,1}nEr∈{0,1}p(n)1MA(x,r)6=A(x) ≤2−2n

and Er∈{0,1}p(n)Ex∈{0,1}n1MA(x,r)6=A(x) ≤2−2n

So ∃r0 ∈ {0, 1}p(n). Ex∈{0,1}n1MA(x,r0)6=A(x) ≤2−2n

and ∃r0 ∈ {0, 1}p(n). Px∈{0,1}n [MA(x, r0) 6= A(x)] ≤2−2n

3

Since the matrix has only 2n elements in any column, this column must only have 0 entries. If we
fix the r0 associated with the column and give these p(n) bits as advice for inputs of length n, then
by construction the algorithm will always be correct on any input of length n.

4 Randomization versus PH

Theorem 4.1 (Sipser-Gacs-Lauteman). BPP ⊆ ΣP
2 ∩ ΠP

2 .

Proof. Since BPP is closed under complement, it suffices to prove that BPP ⊆ ΣP
2 . We use that

BPP = BPP2−n . Therefore there is a polytime TM M using m = p(n) random bits such that
Pr∈{0,1}m [M(x, r) 6= A(x)] ≤ 2−n.

For each x ∈ {0, 1}n let Sx ⊆ {0, 1}m be the set of r such that M(x, r) = 1.

Observe that
if x ∈ A then |Sx|/2m ≥ (1− 2−n) but
if x /∈ A then |Sx|/2m ≤ 2−n.

That is, Sx is either tiny or it is almost all of {0, 1}m. Determining whether x is in A is equivalent
to determining of whether Sx is tiny or huge; moreover, by definition we have a polynomial-time
test for membership of r in Sx, namely run M on input (x, r).

The key is to look at many “shifts” of Sx. For a set S ⊆ {0, 1}m and a vector u ∈ {0, 1}m, define
S ⊕ u = {r ⊕ u | r ∈ S}.

The following lemma was proved by Lautemann. (Sipser and Gacs used a different argument.)

Lemma 4.2. Let S ⊆ {0, 1}m.

1. Let k = dm
n
+1e. If |S|/2m ≥ 1−2−n then ∃u1, . . . , uk ∈ {0, 1}m such that

⋃k
i=1(S⊕ui) =

{0, 1}m.

2. If k < 2n and |S|/2m ≤ 2−n then ∀u1, . . . , uk ∈ {0, 1}m such
⋃k
i=1(S ⊕ ui) 6= {0, 1}m.

4

We first see how the statement follows from the lemma. By definition, for k = dm
n
+ 1e we have

x ∈ A⇔ ∃u1, . . . , uk ∈ {0, 1}m ∀r ∈ {0, 1}m r ∈
k⋃
i=1

(Sx ⊕ ui)

⇔ ∃u1, . . . , uk ∈ {0, 1}m ∀r ∈ {0, 1}m
k∨
i=1

(r ⊕ ui ∈ Sx)

⇔ ∃u1, . . . , uk ∈ {0, 1}m ∀r ∈ {0, 1}m
k∨
i=1

(M(x, r ⊕ ui) = 1)

which shows that A ∈ ΣP
2 as required.

We finish by giving the proof of the lemma in the next class.

5

	Polynomial Identity Testing continued
	Reducing Errors
	Randomization versus Non-uniformity
	Randomization versus PH

