
CSE 531: Computational Complexity I Winter 2016

Lecture 11: Randomization and Complexity
Feb 10, 2016

Lecturer: Paul Beame Scribe: Paul Beame

1 Randomized Computation

Though Turing machines capabilities are quite general, we have not included an important aspect
of computation that may be practical and useful: the ability to use random choices in the design of
algorithms.

Definition 1.1. A probabilistic Turing machine (PTM) M is a TM with two transition functions
in place of the usual one: δ0 : Q × Γk+1 → Q × (Γ × L, S,R)k+1 and δ1 : Q × Γk+1 →
Q× (Γ× L, S,R)k+1. At each time step, independently, the algorithm chooses b from {0, 1} with
equal probability 1/2 and makes its move using transition function δb. The running time of M is
the maximum number of steps before M halts over all random choices.

But what does it mean for a probabilistic Turing machine to compute a Boolean function or decide
a language A? We have several possibilities:

• 2-sided error: The probability the algorithm is correct is bounded away from 1/2, for example
with probability ≥ 2/3.

• 1-sided error: The algorithm succeeds with probability bounded away from 0, say probability
≥ 2/3, when x ∈ A, but never makes an error when x /∈ A. (Alternatively, we may swap
the cases.)

• 0-sided error: The algorithm never makes an error. In this case we cannot assume a bounded
running time, since any algorithm that is always correct and has a fixed bound on time can
be replaced by a deterministic algorithm that only uses δ0 (or only used δ1). Instead, in this
case we use expected running time.

For each of these notions of correctness and time bounds we define the corresponding complexity
classes. For the first two notions, instead of using PTMs directly, we use an equivalent definition
that lets us explicitly discuss the random choices made by the algorithm. The terminology as with
the names of some other complexity classes is not especially consistent in style. For all of these

1

choices it is important to note that the complexity is the worst-case complexity over the choice of
the input. The only random choices are made by the algorithm.

For convenience, for each language A ⊆ {0, 1}∗, we also define an associated Boolean function
on {0, 1}∗, such that A(x) = 1 iff x ∈ A.

Definition 1.2. Let T : N → N be a running time bound and ε : N → [0, 1] be an error bound.
BPTIMEε(T(n)) is the set of languages A such that there is a TM M with running time t(n) that
is O(T (n)) such that

Pr∈R{0,1}t(|x|) [M(x, r) = A(x)] ≥ 1− ε(|x|)

The BP stands for “bounded-error probabilistic”. We write BPTIME(T(n)) = BPTIME1/3(T(n))
and BPP =

⋃
k BPTIME(nk).

Definition 1.3. Let T : N→ N be a running time bound and ε : N→ [0, 1/2) be an error bound.
RTIMEε(T(n)) is the set of languages A such that there is a TM M with running time t(n) that is
O(T (n)) such that

x ∈ A⇒Pr∈R{0,1}t(|x|) [M(x, r) = 1] ≥ 1− ε(|x|), and

x /∈ A⇒Pr∈R{0,1}t(|x|) [M(x, r) = 0] = 0.

The R stands for “randomized”. We write RTIME(T(n)) = RTIME1/3(T(n)) and RP =
⋃

k RTIME(nk).

Since this is a one-sided notion of error, there is also the dual complexity class.
We write coRTIME(T(n)) = {A | A ∈ RTIME(T(n))} and coRP = {A | A ∈ RP}.
Clearly RP, coRP ⊆ BPP by definition.

By observing the correspondance of definitions we immediately also have RTIME(T(n)) ⊆ NTIME(T(n))
for all T (n). (Instead of just one witness, a substantial majority of strings are witnesses.) Hence
RP ⊆ NP and coRP ⊆ coNP.

Definition 1.4. We now define ZPTIME(T(n)) to be the set of languages A such that there is a
polynomial-time PTM M such that for all x ∈ {0, 1}∗,

x ∈ A⇔M(x) accepts

and for every x ∈ {0, 1}∗, the expected running time of M on input x is O(T (|x|)).

In this case, ZP stands for “zero-error”.
We write ZPP =

⋃
k ZPTIME(nk).

Error-free probabilistic algorithms became known as “Las Vegas” algorithms to distinguish them
from probabilistic algorithms with error, which had been known as “Monte Carlo” algorithms since
the 1940s.

2

Theorem 1.5. ZPP = RP ∩ coRP.
More generally, ZPTIME(T(n)) = RTIME(T(n)) ∩ coRTIME(T(n)) for all T (n) ≥ n.

Proof. We prove the special case. The general case follows almost identically.
⊆: Let A ∈ ZPP.
Then there is a PTM MA with expected running time at most T (n) ≤ knk for integer k such that
MA computes A(x) with certainty. By Markov’s inequality, the probability that MA takes time
≥ 3T (n) is at most 1/3. The RP and coRP algorithms will both run MA for 3knk steps. If MA has
halted in this many step then output the answer produced by MA. In the case that MA has not yet
halted, the RP algorithm will reject, and the coRP algorithm will accept.
⊇: Let A ∈ RP ∩ coRP.
Let M1

A be the RP algorithm for A, which is always correct when it outputs 1.
Let M0

A be the coRP algorithm for A, which is always correct when it outputs 0.
Let knk be an upper bound on the running time for each of M1

A and M0
A. The zero-error algorithm

is as follows:

Repeat forever:
.25in Choose a knk random bit string r and run both M1

A and M0
A on input x.

.25in If M1
A outputs 1 then halt and output 1; if M0

A outputs 0 then halt and output 0.

If x ∈ A then M1
A will output 1 with probability ≥ 1/3 per iteration. if x /∈ A then M0

A will output
0 with probability ≥ 1/3 per iteration. The expected # of iterations required is 3 and hence the
total running time is at most 6knk.

We have now discussed the basic definitions of randomized computation. Randomization is es-
sential for subjects such as cryptography where one needs to randomization to have unpredictable
secrets.

However, it is still open whether or not randomization helps for language recognition: Is P = BPP
or P = ZPP. When it was originally introduced for computation of languages, one of the first
examples was the case of PRIMES ∈ coRP which gave a randomized algorithm for composite-
ness. However, in 2002, Agrawal, Kayal, and Saxena proved that PRIMES ∈ P. Unlike the P
versus NP question, where researchers overwhelming believe that nondeterminism increases com-
putational power, the consensus is not so clear regarding the power randomization. However, more
would likely bet on the ability to avoid its use. One of the other examples that still remains is that
of polynomial identity testing, which is in some sense the key candidate problem in the area.

3

2 Polynomial Identity Testing

Definition 2.1. An arithmetic (algebraic) circuit C over Z or over a finite field F is a circuit with
binar fan-in gates labelled by +, −, ×, and variable names x1, . . . , xn, as well as constants 0 and
1. It computes a multivariate polynomial in the input variables x1, . . . , xn.

Definition 2.2. The polynomial identity testing problem PITF = {[C], [C ′] | C, C ′ are arithmetic circuits over F computing the same polynomial}.
By adding a single− to joinC andC ′ at the output, it is clearly equivalent to the following problem
which is more convenient: ZEROPF = {[C] | C is an arithmetic circuit over F computing the 0 polynomial}.
The analogous definitions hold if we replace F by Z.

Theorem 2.3. PITZ, ZEROPZ ∈ coRP. The same holds true for sufficiently large finite fields F.

The proof of the theorem will be derived from the following lemma.

Lemma 2.4 (Schwartz,Zippel). Let p(x1, . . . , xn) be a non-zero polynomial over Z (respectively
F) of (total) degree ≤ d. Let S ⊆ Z (respectively F) be a finite set. If a1, . . . , an are independently
and uniformly chosen from S then

Pa1,...,an [p(a1, . . . , an) = 0] ≤ d

|S|
.

Proof. We prove this by induction. The case of n = 0 is trivial, since a non-zero constant polyno-
mial is never 0.

We prove a base case for n = 1 also. In this case, p 6= 0 is an ordinary univariate polynomial of
degree at most d. By the Fundamental Theorem of Arithmetic it has at most d roots in Z or in in F.
At most d of these roots are in S so the probability that the single variable a1 is chosen to be one
of them is d/|S| as required.

Now suppose that it is true for 1 and n. We prove it for n + 1 We expand p using the powers of
xn+1. Let i∗ be the largest power of xn+1 in p. Then

p(x1, . . . , xn+1) =
i∗∑
i=0

pi(x1, . . . , xn)xin+1

where each pi has total degree at most d−i. In particular, observe that if pi∗(a1, . . . , an) is non-zero
then q(xn+1) = p(a1, . . . , an, xn+1) is a non-zero polynomial in xn+1 of degree i∗. Therefore

Pa1,...,an+1 [p(a1, . . . , an+1) = 0]

≤Pa1,...,an [pi∗(a1, . . . , an) = 0]

+ Pa1,...,an+1 [p(a1, . . . , an+1) = 0 | pi∗(a1, . . . , an) 6= 0]

≤d− i
∗

|S|
+

i∗

|S|
=

d

|S|
.

4

where the first bound follows by induction from the fact that the degree of pi∗ is at most d− i∗ and
it has at most n variables and the second bound follows from the univariate case.

The extension to F is immediate.

5

	Randomized Computation
	Polynomial Identity Testing

