CSE 531: Computational Complexity I Lecture 9: Polynomial-Time Hierarchy, Time-Space Tradeoffs

Feb 3, 2016

Scribe: Paul Beame

Lecturer: Paul Beame

The Polynomial-Time Hierarchy 1

Last time we defined problems

EXACT- $INDSET = \{[G, k] \mid \text{ the largest independent set of } G \text{ has size } = k\},\$

 $MINDNF = \{ [\varphi, k] \mid \varphi \text{ is a DNF that has an equivalent DNF of size } \leq k \},\$

and the complexity classes Σ_2^P and its dual Π_2^P . Σ_2^P and Π_2^P were defined in analogy with NP and coNP except that there are two levels of quantifiers with alternation $\exists \forall$ and $\forall \exists$, respectively. We observed that $MINDNF \in \Sigma_2^P$ and $EXACT-INDSET \in \Sigma_2^P \cap \Pi_2^P$.

More generally we have the definition:

Definition 1.1. Σ_k^P is the set of $A \subseteq \{0,1\}^*$ such that there exist polynomials p_1, \ldots, p_k and polynomial-time verifier V such that

$$x \in A \iff \exists y_1 \in \{0,1\}^{p_1(|x|)} \forall y_2 \in \{0,1\}^{p_2(|x|)} \dots Q_k y_k \in \{0,1\}^{p_k(|x|)} (V(x,y_1,\dots,y_k) = 1)$$

where $Q_k = \exists$ if k is odd and $Q_k = \forall$ if k is even. $\Pi_k^P = \{\overline{L} \mid L \in \Sigma_k^P\}$; alternatively, it is the set of $B \subseteq \{0,1\}^*$ such that there exist p_1, \ldots, p_k and V such that

$$x \in B \iff \forall y_1 \in \{0, 1\}^{p_1(|x|)} \exists y_2 \in \{0, 1\}^{p_2(|x|)} \dots Q_k y_k \in \{0, 1\}^{p_k(|x|)} (V(x, y_1, \dots, y_k) = 1)$$

where $Q_k = \forall$ if k is odd and $Q_k = \exists$ if k is even.

In general one often says that there are k alternations¹ in each of these definitions where k is the number of quantifier blocks in them. The following properties are all immediate from the definitions.

1. $\Sigma_k^P \subseteq \prod_{k=1}^P$ and $\prod_k^P \subseteq \Sigma_{k+1}^P$. **Proposition 1.2.**

2. $NP = \Sigma_1^P$ and $coNP = \Pi_1^P$.

¹even though there are only k-1 switches from one kind of quantifier to the other

3. $P = \Sigma_0^P = \Pi_0^P$.

Definition 1.3. *The* polynomial-time hierarchy $PH = \bigcup_k \Sigma_k^P = \bigcup_k \Pi_k^P$.

We can define the notion of completeness for each of these classes in the same way as we have defined it for other classes above P.

Definition 1.4. *B* is Σ_k^P -complete (respectively Π_k^P -complete) iff

- 1. $B \in \Sigma_k^{\mathsf{P}}$ (respectively Π_k^P), and
- 2. For all $A \in \Sigma_{k}^{\mathsf{P}}$ (respectively Π_{k}^{P}), $A \leq_{P} B$.

We see that natural restrictions of TQBF form the complete problems for all levels

Definition 1.5. Define $\Sigma_k SAT$ to be the set of quantified Boolean formulas of the form

 $\exists \vec{x}_1 \forall \vec{x}_2 \cdots Q_k \vec{x}_k \varphi(\vec{x}_1, \dots \vec{x}_k)$

that evaluate to true. $\Pi_k SAT$ is the dual set of the form

$$\forall \vec{x}_1 \exists \vec{x}_2 \cdots Q_k \vec{x}_k \varphi(\vec{x}_1, \dots \vec{x}_k)$$

that evaluate to true.

The previous arguments for the proof of the Cook-Levin theorem immediately extend to show the following:

Proposition 1.6. $\Sigma_k SAT$ is Sigma^P_k-complete and $\Pi_k SAT$ is Π^{P}_k -complete.

Umans showed the following via a much more difficult proof.

Fact 1.7. MINDNF is Σ_2^P -complete.

Observe also that the PH does not have a complete problem unless $PH = \Sigma_k^P$ for some k. Any complete problem must be in Σ_k^P for some fixed k and hence all of would be contained in it.

Theorem 1.8. 1. for all $k \ge 1$ if $\Sigma_k^P = \Pi_k^P$ then $\mathsf{PH} = \Sigma_k^P \cap \Pi_k^P = \Sigma_k^P$. (In this case we say that PH "collapses to level k".

2. If P = NP then PH = P.

Proof. We first prove part 2. The proof is by induction that $\Sigma_k^P \subseteq \mathsf{P}$. The base case Σ_1^P subset P follows by assumption Assume that Σ_k^P is in P . Let $A \subseteq \Sigma_{k+1}^P$. We first assume that k+1 is odd. Then there are polynomials p_1, \ldots, p_{k+1} and polynomial time verifier V such that

$$x \in A \iff \exists y_1 \in \{0,1\}^{p_1(|x|)} \forall y_2 \in \{0,1\}^{p_2(|x|)} \dots \exists y_{k+1} \in \{0,1\}^{p_{k+1}(|x|)} (V(x,y_1,\dots,y_{k+1}) = 1)$$

Since P = NP there is a polynomial-time algorithm W such that $W(x, y_1, \ldots, y_k) = 1$ iff $\exists y_{k+1} \in \{0, 1\}^{p_{k+1}(|x|)}$ $(V(x, y_1, \ldots, y_{k+1}) = 1$. By using the former instead of the latter we get that A is in Σ_k^P and hence in P by the inductive hypothesis. If k + 1 is even then the k + 1-st quantifier is \forall which we can also express as $\neg \exists \neg$. We apply the P = NP assumption to find a polynomial-time algorithm for $\exists y_{k+1} \in \{0, 1\}^{p_{k+1}(|x|)} V(x, y_1, \ldots, y_{k+1}) \neq 1$ and complement its answer to obtain the same result.

The proof for part 1 uses a similar idea. For any $A \in \Sigma_i^P$ for i > k, since $\Sigma_k^P = \prod_k^P$ we can replace the last k quantifiers by their dual. Rather than removing the last quantifier as in part 2, this will lead to two quantifiers of the same type next to each other of variables y_{i-k} and y_{i-k-1} . This can be described in terms of a single variable y' having bit-length the sum of those for the other two. This is one less alternation and so $\Sigma_i^P \subseteq \Sigma_{i-1}^P$. By induction $\mathsf{PH} \subseteq \Sigma_k^P$ which implies the claim. \Box

We now give an alternative characterization of the levels of PH using oracles for complete problems.

Theorem 1.9. $\Sigma_2^P = NP^{SAT}$ and $\Pi_2^P = coNP^{SAT}$. More generally, $\Sigma_{k+1}^P = NP^{\Sigma_k SAT}$.

Proof. We prove the case $\Sigma_2^{\mathsf{P}} = \mathsf{NP}^{\mathsf{SAT}}$; the rest of the cases are similar. $\Sigma_2^{\mathsf{P}} \subseteq \mathsf{NP}^{\mathsf{SAT}}$: Let $A \in \Sigma_2^{\mathsf{P}}$. Then there are q_1, q_2 and V such that

$$x \in A \iff \exists y_1 \in \{0, 1\}^{q_1(|x|)} \neg \exists y_2 \in \{0, 1\}^{q_2(|x|)} \ (V(x, y_1, y_2) \neq 1).$$

The NP^{SAT} algorithm guesses y_1 and calls the SAT oracle on the formula expressing $V(x, y_1, y_2) \neq 1$ and flips its answer. Therefore $A \in NP^{SAT}$.

<u>NPSAT</u> $\subseteq \Sigma_2^{\mathbf{P}}$: Let $A \in \mathsf{NPSAT}$. Let $M_A^?$ be a polynomial-time oracle NTM and let T(n) be its polynomial running time. The computation of M_A^{SAT} on input x is a tree that has branches of length T(n). There are two sources of branching of M_A^{SAT} : the nondeterministic choices of $M_A^?$ itself, and the answers to the up to T(n) calls to the SAT oracle, each of which may depend on the previous calls. To show that $A \in \Sigma_2^P$, we use the existentially quantified variables to guess: (1) the nondeterministic guesses \vec{g} of $M_A^?$ on input x, (2) all of the formulas $\vec{\varphi}$ that are asked as questions that $M_A^?$ asks of the SAT oracle, (3) the answers \vec{a} to each of the formulas asked to the SAT oracle, and (4) the satisfying assignments $\vec{\alpha}$ for each of the formulas φ_i for which the answer $a_i = 1$. There are universally quantified variables for potential assignments $\vec{\beta}$ for each of the formulas φ_i for which $a_i = 0$. The polynomial-time verifier then checks that (a) the computation is accepting, (b) that $\varphi_i(\alpha_i) = 1$ for each i such that $a_i = 1$, and (c) that $\varphi_i(\beta_i) = 0$ for each i such that $a_i = 0$. Therefore $A \in \Sigma_2^P$.

The same method works at higher levels also, using a $\Sigma_k SAT$ oracle instead of a SAT oracle. \Box

2 Time-Space Tradeoffs for *SAT*

Definition 2.1. Let DTIME-SPACE(T(n), S(n)) be the set of languages L that are decided by a *TM* M that runs in time O(T(n)) and space O(S(n)).

Now DTIME-SPACE(T(n), S(n)) \subseteq DTIME(T(n)) \cap DSPACE(S(n)) but we do not know that the two are equal. For example we know that $PATH \in DTIME(n^2)$ and $PATH \in NL \subseteq$ DSPACE($\log^2 n$) but we do not know whether or not PATH is in DTIME-SPACE($n^{O(1)}, \log^{O(1)} n$).

Theorem 2.2 (Fortnow,Fortnow-Lipton-Van Melkebeek-Viglas). If $(1 + \varepsilon + 2\delta)(1 + \varepsilon) < 2$ then

$$\mathsf{NTIME}(\mathsf{n}) \not\subseteq \mathsf{DTIME}\operatorname{-SPACE}(\mathsf{n}^{1+\varepsilon},\mathsf{n}^{\delta}).$$

Before giving the proof we show that

Corollary 2.3. For every $\gamma > 0$, $SAT \notin DTIME-SPACE(n^{\sqrt{2}-\gamma}, n^{o(1)})$.

Proof. For $\gamma > 0$, we choose $\delta = \gamma/4$ and $\varepsilon = \sqrt{2} - 1 - 2\gamma$. Then $(1 + \varepsilon + 2\delta)(1 + \varepsilon) < (\sqrt{2} - \gamma)^2 < 2$. If the statement of the corollary is false, as we discussed in the simulation of Turing machines by circuits (and then formulas), every language in NTIME(n) is reducible to SAT in time $n \log^{O(1)} n$ using formulas of size $O(n \log n)$, and space $\log^{O(1)} n$. Therefore if SAT could be solved in the claimed time and space bounds it would violate the theorem with the above parameters. \Box

Proof of Theorem 2.2. Let $(1 + \varepsilon + 2\delta)(1 + \varepsilon) < 2$ and suppose that

NTIME(n)
$$\subseteq$$
 DTIME-SPACE(n^{1+ ε} , n ^{δ}).

We will show that this will imply a violation of the nondeterministic time hierarchy theorem. As we have seen in padding arguments we can substitute any time and space constructible function g(n) for n. It follows that

$$\mathsf{NTIME}(\mathsf{n}^2) \subseteq \mathsf{DTIME}\operatorname{-SPACE}(\mathsf{n}^{2+2\varepsilon},\mathsf{n}^{2\delta}).$$

Suppose that $L \in \mathsf{DTIME}$ -SPACE $(\mathsf{n}^{2+2\varepsilon}, \mathsf{n}^{2\delta})$, and let M_L be the associated TM deciding L that runs in time $c_T n^{2+2\varepsilon}$ and space $c_S n^{2\delta}$. By definition, $x \in L \Leftrightarrow$

 \exists a vector y describing a sequence of configurations $C_0, C_1, \ldots, C_{n^{1+\varepsilon}}$ of M_L , each of which is expressible in $O(n^{2\delta})$ bits, such that C_0 is the initial configuration of M_L on input x, $C_{n^{1+\varepsilon}}$ is an accepting configuration of M_L such that

 $\forall i \in \{1, \ldots, n^{1+\varepsilon}\}$ there is a computation of M_L of length at most $c_T n^{1+\varepsilon}$ begining with C_{i-1} and ending in C_i .

The last part of the computation after the \forall is described by a function V(x, y, i) that is computed by a TM that runs in time $n^{1+\varepsilon+2\delta}$. Including the \forall , this can be expressed as $\neg \exists \neg V(x, y, i)$ and the part its first \neg is a computation in $NTIME(n^{1+\varepsilon+2\delta})$. By padding with function $g(n) = n^{1+\varepsilon+2\delta}$, the assumption that $\mathsf{NTIME}(\mathsf{n}) \subseteq \mathsf{DTIME}$ -SPACE $(\mathsf{n}^{1+\varepsilon}, \mathsf{n}^{\delta})$ which implies that $\mathsf{NTIME}(\mathsf{n}) \subseteq \mathsf{DTIME}(\mathsf{n}^{1+\varepsilon})$, also implies that $NTIME(n^{1+\varepsilon+2\delta}) \subseteq \mathsf{DTIME}(\mathsf{n}^{(1+\varepsilon+2\delta)(1+\varepsilon)})$. Therefore the entire part of the computation beginning with the \forall quantifier can be done in $\mathsf{DTIME}(\mathsf{n}^{(1+\varepsilon+2\delta)(1+\varepsilon)})$.

Adding in the existentially quantified part, it follows that $L \in \mathsf{NTIME}(\mathsf{n}^{(1+\varepsilon+2\delta)(1+\epsilon)})$. Therefore $\mathsf{NTIME}(\mathsf{n}^2) \subseteq \mathsf{NTIME}(\mathsf{n}^{(1+\varepsilon+2\delta)(1+\epsilon)})$ which contradicts the nondeterministic time hierarchy theorem since $(1+\varepsilon+2\delta)(1+\epsilon) < 2$.