
CSE 531: Computational Complexity I Winter 2016

Lecture 9: Polynomial-Time Hierarchy, Time-Space Tradeoffs
Feb 3, 2016

Lecturer: Paul Beame Scribe: Paul Beame

1 The Polynomial-Time Hierarchy

Last time we defined problems

EXACT -INDSET = {[G, k] | the largest independent set of G has size = k},

MINDNF = {[ϕ, k] | ϕ is a DNF that has an equivalent DNF of size ≤ k},

and the complexity classes ΣP
2 and its dual ΠP

2 . ΣP
2 and ΠP

2 were defined in analogy with NP and
coNP except that there are two levels of quantifiers with alternation ∃∀ and ∀∃, respectively. We
observed that MINDNF ∈ ΣP

2 and EXACT -INDSET ∈ ΣP
2 ∩ ΠP

2 .

More generally we have the definition:

Definition 1.1. ΣP
k is the set of A ⊆ {0, 1}∗ such that there exist polynomials p1, . . . , pk and

polynomial-time verifier V such that

x ∈ A ⇔ ∃y1 ∈ {0, 1}p1(|x|)∀y2 ∈ {0, 1}p2(|x|) . . . Qkyk ∈ {0, 1}pk(|x| (V (x, y1, . . . , yk) = 1)

where Qk = ∃ if k is odd and Qk = ∀ if k is even.
ΠP
k = {L | L ∈ ΣP

k }; alternatively, it is the set of B ⊆ {0, 1}∗ such that there exist p1, . . . , pk and
V such that

x ∈ B ⇔ ∀y1 ∈ {0, 1}p1(|x|)∃y2 ∈ {0, 1}p2(|x|) . . . Qkyk ∈ {0, 1}pk(|x| (V (x, y1, . . . , yk) = 1)

where Qk = ∀ if k is odd and Qk = ∃ if k is even.

In general one often says that there are k alternations1 in each of these definitions where k is
the number of quantifier blocks in them. The following properties are all immediate from the
definitions.

Proposition 1.2. 1. ΣP
k ⊆ ΠP

k+1 and ΠP
k ⊆ ΣP

k+1.

2. NP = ΣP
1 and coNP = ΠP

1 .

1even though there are only k − 1 switches from one kind of quantifier to the other

1

3. P = ΣP
0 = ΠP

0 .

Definition 1.3. The polynomial-time hierarchy PH =
⋃

k ΣP
k =

⋃
k ΠP

k .

We can define the notion of completeness for each of these classes in the same way as we have
defined it for other classes above P .

Definition 1.4. B is ΣP
k -complete (respectively ΠP

k -complete) iff

1. B ∈ ΣP
k (respectively ΠP

k), and

2. For all A ∈ ΣP
k (respectively ΠP

k), A ≤P B.

We see that natural restrictions of TQBF form the complete problems for all levels

Definition 1.5. Define ΣkSAT to be the set of quantified Boolean formulas of the form

∃~x1∀~x2 · · ·Qk~xkϕ(~x1, . . . ~xk)

that evaluate to true. ΠkSAT is the dual set of the form

∀~x1∃~x2 · · ·Qk~xkϕ(~x1, . . . ~xk)

that evaluate to true.

The previous arguments for the proof of the Cook-Levin theorem immediately extend to show the
following:

Proposition 1.6. ΣkSAT is SigmaP
k -complete and ΠkSAT is ΠP

k -complete.

Umans showed the following via a much more difficult proof.

Fact 1.7. MINDNF is ΣP
2 -complete.

Observe also that the PH does not have a complete problem unless PH = ΣP
k for some k. Any

complete problem must be in ΣP
k for some fixed k and hence all of would be contained in it.

Theorem 1.8. 1. forallk ≥ 1 if ΣP
k = ΠP

k then PH = ΣP
k ∩ ΠP

k = ΣP
k . (In this case we say

that PH “collapses to level k”.

2. If P = NP then PH = P.

2

Proof. We first prove part 2. The proof is by induction that ΣP
k ⊆ P. The base case ΣP

1 subset P
follows by assumption Assume that ΣP

k is in P. Let A ⊆ ΣP
k+1. We first assume that k + 1 is odd.

Then there are polynomials p1, . . . , pk+1 and polynomial time verifier V such that

x ∈ A ⇔ ∃y1 ∈ {0, 1}p1(|x|)∀y2 ∈ {0, 1}p2(|x|) . . . ∃yk+1 ∈ {0, 1}pk+1(|x| (V (x, y1, . . . , yk+1) = 1).

Since P = NP there is a polynomial-time algorithm W such that W (x, y1, . . . , yk) = 1 iff ∃yk+1 ∈
{0, 1}pk+1(|x|) (V (x, y1, . . . , yk+1) = 1. By using the former instead of the latter we get that A is in
ΣP
k and hence in P by the inductive hypothesis. If k + 1 is even then the k + 1-st quantifier is ∀

which we can also express as ¬∃¬. We apply the P = NP assumption to find a polynomial-time
algorithm for ∃yk+1 ∈ {0, 1}pk+1(|x|)V (x, y1, . . . , yk+1) 6= 1 and complement its answer to obtain
the same result.

The proof for part 1 uses a similar idea. For any A ∈ ΣP
i for i > k, since ΣP

k = ΠP
k we can replace

the last k quantifiers by their dual. Rather than removing the last quantifier as in part 2, this will
lead to two quantifiers of the same type next to each other of variables yi−k and yi−k−1. This can be
described in terms of a single variable y′ having bit-length the sum of those for the other two. This
is one less alternation and so ΣP

i ⊆ ΣP
i−1. By induction PH ⊆ ΣP

k which implies the claim.

We now give an alternative characterization of the levels of PH using oracles for complete prob-
lems.

Theorem 1.9. ΣP
2 = NPSAT and ΠP

2 = coNPSAT. More generally, ΣP
k+1 = NPΣkSAT.

Proof. We prove the case ΣP
2 = NPSAT; the rest of the cases are similar.

ΣP
2 ⊆ NPSAT: Let A ∈ ΣP

2 . Then there are q1, q2 and V such that

x ∈ A ⇔ ∃y1 ∈ {0, 1}q1(|x|)¬∃y2 ∈ {0, 1}q2(|x|) (V (x, y1, y2) 6= 1).

The NPSAT algorithm guesses y1 and calls the SAT oracle on the formula expressing V (x, y1, y2) 6=
1 and flips its answer. Therefore A ∈ NPSAT.
NPSAT ⊆ ΣP

2 : Let A ∈ NPSAT. Let M ?
A be a polynomial-time oracle NTM and let T (n) be its

polynomial running time. The computation of MSAT
A on input x is a tree that has branches of

length T (n). There are two sources of branching of MSAT
A : the nondeterministic choices of M ?

A

itself, and the answers to the up to T (n) calls to the SAT oracle, each of which may depend on
the previous calls. To show that A ∈ ΣP

2 , we use the existentially quantified variables to guess:
(1) the nondeterministic guesses ~g of M ?

A on input x, (2) all of the formulas ~ϕ that are asked as
questions that M ?

A asks of the SAT oracle, (3) the answers ~a to each of the formulas asked to the
SAT oracle, and (4) the satisfying assignments ~α for each of the formulas ϕi for which the answer
ai = 1. There are universally quantified variables for potential assignments ~β for each of the
formulas ϕi for which ai = 0. The polynomial-time verifier then checks that (a) the computation
is accepting, (b) that ϕi(αi) = 1 for each i such that ai = 1, and (c) that ϕi(βi) = 0 for each i such
that ai = 0. Therefore A ∈ ΣP

2 .

The same method works at higher levels also, using a ΣkSAT oracle instead of a SAT oracle.

3

2 Time-Space Tradeoffs for SAT

Definition 2.1. Let DTIME-SPACE(T(n), S(n)) be the set of languages L that are decided by a
TM M that runs in time O(T (n)) and space O(S(n)).

Now DTIME-SPACE(T(n), S(n)) ⊆ DTIME(T(n)) ∩ DSPACE(S(n)) but we do not know that
the two are equal. For example we know that PATH ∈ DTIME(n2) and PATH ∈ NL ⊆
DSPACE(log2 n) but we do not know whether or not PATH is in DTIME-SPACE(nO(1), logO(1) n).

Theorem 2.2 (Fortnow,Fortnow-Lipton-Van Melkebeek-Viglas). If (1 + ε+ 2δ)(1 + ε) < 2 then

NTIME(n) 6⊆ DTIME-SPACE(n1+ε, nδ).

Before giving the proof we show that

Corollary 2.3. For every γ > 0, SAT /∈ DTIME-SPACE(n
√

2−γ, no(1)).

Proof. For γ > 0, we choose δ = γ/4 and ε =
√

2−1−2γ. Then (1+ε+2δ)(1+ε) < (
√

2−γ)2 <
2. If the statement of the corollary is false, as we discussed in the simulation of Turing machines by
circuits (and then formulas), every language in NTIME(n) is reducible to SAT in time n logO(1) n
using formulas of size O(n log n), and space logO(1) n. Therefore if SAT could be solved in the
claimed time and space bounds it would violate the theorem with the above parameters.

Proof of Theorem 2.2. Let (1 + ε+ 2δ)(1 + ε) < 2 and suppose that

NTIME(n) ⊆ DTIME-SPACE(n1+ε, nδ).

We will show that this will imply a violation of the nondeterministic time hierarchy theorem. As
we have seen in padding arguments we can substitute any time and space constructible function
g(n) for n. It follows that

NTIME(n2) ⊆ DTIME-SPACE(n2+2ε, n2δ).

Suppose that L ∈ DTIME-SPACE(n2+2ε, n2δ), and let ML be the associated TM deciding L that
runs in time cTn2+2ε and space cSn2δ. By definition, x ∈ L ⇔
∃ a vector y describing a sequence of configurations C0, C1, . . . , Cn1+ε of ML, each of which is
expressible in O(n2δ) bits, such that C0 is the initial configuration of ML on input x, Cn1+ε is an
accepting configuration of ML such that
∀ i ∈ {1, . . . , n1+ε} there is a computation of ML of length at most cTn1+ε begining with Ci−1 and
ending in Ci.

The last part of the computation after the ∀ is described by a function V (x, y, i) that is computed
by a TM that runs in time n1+ε+2δ. Including the ∀, this can be expressed as ¬∃¬V (x, y, i) and the

4

part its first ¬ is a computation in NTIME(n1+ε+2δ). By padding with function g(n) = n1+ε+2δ,
the assumption that NTIME(n) ⊆ DTIME-SPACE(n1+ε, nδ) which implies that NTIME(n) ⊆
DTIME(n1+ε), also implies that NTIME(n1+ε+2δ) ⊆ DTIME(n(1+ε+2δ)(1+ε)). Therefore the en-
tire part of the computation beginning with the ∀ quantifier can be done in DTIME(n(1+ε+2δ)(1+ε)).

Adding in the existentially quantified part, it follows that L ∈ NTIME(n(1+ε+2δ)(1+ε)). There-
fore NTIME(n2) ⊆ NTIME(n(1+ε+2δ)(1+ε)) which contradicts the nondeterministic time hierarchy
theorem since (1 + ε+ 2δ)(1 + ε) < 2.

5

	The Polynomial-Time Hierarchy
	Time-Space Tradeoffs for SAT

