Lecture 9: Polynomial-Time Hierarchy, Time-Space Tradeoffs

Feb 3, 2016
Lecturer: Paul Beame
Scribe: Paul Beame

1 The Polynomial-Time Hierarchy

Last time we defined problems

$$
\begin{gathered}
E X A C T-I N D S E T=\{[G, k] \mid \text { the largest independent set of } G \text { has size }=k\}, \\
M I N D N F=\{[\varphi, k] \mid \varphi \text { is a DNF that has an equivalent DNF of size } \leq k\},
\end{gathered}
$$

and the complexity classes Σ_{2}^{P} and its dual $\Pi_{2}^{P} . \Sigma_{2}^{P}$ and Π_{2}^{P} were defined in analogy with NP and coNP except that there are two levels of quantifiers with alternation $\exists \forall$ and $\forall \exists$, respectively. We observed that MINDNF $\in \Sigma_{2}^{P}$ and EXACT-INDSET $\in \Sigma_{2}^{P} \cap \Pi_{2}^{P}$.

More generally we have the definition:
Definition 1.1. Σ_{k}^{P} is the set of $A \subseteq\{0,1\}^{*}$ such that there exist polynomials p_{1}, \ldots, p_{k} and polynomial-time verifier V such that

$$
x \in A \Leftrightarrow \exists y_{1} \in\{0,1\}^{p_{1}(|x|)} \forall y_{2} \in\{0,1\}^{p_{2}(|x|)} \ldots Q_{k} y_{k} \in\{0,1\}^{p_{k}(|x|}\left(V\left(x, y_{1}, \ldots, y_{k}\right)=1\right)
$$

where $Q_{k}=\exists$ if k is odd and $Q_{k}=\forall$ if k is even.
$\Pi_{k}^{P}=\left\{\bar{L} \mid L \in \Sigma_{k}^{P}\right\}$; alternatively, it is the set of $B \subseteq\{0,1\}^{*}$ such that there exist p_{1}, \ldots, p_{k} and V such that

$$
x \in B \Leftrightarrow \forall y_{1} \in\{0,1\}^{p_{1}(|x|)} \exists y_{2} \in\{0,1\}^{p_{2}(|x|)} \ldots Q_{k} y_{k} \in\{0,1\}^{p_{k}(|x|}\left(V\left(x, y_{1}, \ldots, y_{k}\right)=1\right)
$$

where $Q_{k}=\forall$ if k is odd and $Q_{k}=\exists$ if k is even.

In general one often says that there are k alternations ${ }^{1}$ in each of these definitions where k is the number of quantifier blocks in them. The following properties are all immediate from the definitions.

Proposition 1.2. 1. $\Sigma_{k}^{P} \subseteq \Pi_{k+1}^{P}$ and $\Pi_{k}^{P} \subseteq \Sigma_{k+1}^{P}$.
2. $\mathrm{NP}=\Sigma_{1}^{\mathrm{P}}$ and $\operatorname{coNP}=\Pi_{1}^{\mathrm{P}}$.

[^0]3. $\mathrm{P}=\Sigma_{0}^{\mathrm{P}}=\Pi_{0}^{\mathrm{P}}$.

Definition 1.3. The polynomial-time hierarchy $P H=\bigcup_{k} \Sigma_{k}^{P}=\bigcup_{k} \Pi_{k}^{P}$.

We can define the notion of completeness for each of these classes in the same way as we have defined it for other classes above P.

Definition 1.4. B is Σ_{k}^{P}-complete (respectively Π_{k}^{P}-complete) iff

1. $B \in \Sigma_{\mathrm{k}}^{\mathrm{P}}$ (respectively Π_{k}^{P}), and
2. For all $A \in \Sigma_{\mathrm{k}}^{\mathrm{P}}$ (respectively Π_{k}^{P}), $A \leq_{P} B$.

We see that natural restrictions of $T Q B F$ form the complete problems for all levels
Definition 1.5. Define $\Sigma_{k} S A T$ to be the set of quantified Boolean formulas of the form

$$
\exists \vec{x}_{1} \forall \vec{x}_{2} \cdots Q_{k} \vec{x}_{k} \varphi\left(\vec{x}_{1}, \ldots \vec{x}_{k}\right)
$$

that evaluate to true. $\Pi_{k} S A T$ is the dual set of the form

$$
\forall \vec{x}_{1} \exists \vec{x}_{2} \cdots Q_{k} \vec{x}_{k} \varphi\left(\vec{x}_{1}, \ldots \vec{x}_{k}\right)
$$

that evaluate to true.

The previous arguments for the proof of the Cook-Levin theorem immediately extend to show the following:

Proposition 1.6. $\Sigma_{k} S A T$ is Sigma $\mathrm{e}_{\mathrm{k}}^{\mathrm{P}}$-complete and $\Pi_{k} S A T$ is $\Pi_{\mathrm{k}}^{\mathrm{P}}$-complete.

Umans showed the following via a much more difficult proof.
Fact 1.7. $M I N D N F$ is Σ_{2}^{P}-complete.

Observe also that the PH does not have a complete problem unless $\mathrm{PH}=\Sigma_{\mathrm{k}}^{\mathrm{P}}$ for some k. Any complete problem must be in $\sum_{\mathrm{k}}^{\mathrm{P}}$ for some fixed k and hence all of would be contained in it.

Theorem 1.8. 1. forallk ≥ 1 if $\Sigma_{k}^{P}=\Pi_{k}^{P}$ then $\mathrm{PH}=\Sigma_{\mathrm{k}}^{\mathrm{P}} \cap \Pi_{\mathrm{k}}^{\mathrm{P}}=\Sigma_{\mathrm{k}}^{\mathrm{P}}$. (In this case we say that PH "collapses to level k ".
2. If $\mathrm{P}=\mathrm{NP}$ then $\mathrm{PH}=\mathrm{P}$.

Proof. We first prove part 2 . The proof is by induction that $\Sigma_{k}^{P} \subseteq \mathrm{P}$. The base case Σ_{1}^{P} subset P follows by assumption Assume that Σ_{k}^{P} is in P . Let $A \subseteq \Sigma_{k+1}^{P}$. We first assume that $k+1$ is odd. Then there are polynomials p_{1}, \ldots, p_{k+1} and polynomial time verifier V such that
$x \in A \Leftrightarrow \exists y_{1} \in\{0,1\}^{p_{1}(|x|)} \forall y_{2} \in\{0,1\}^{p_{2}(|x|)} \ldots \exists y_{k+1} \in\{0,1\}^{p_{k+1}(|x|}\left(V\left(x, y_{1}, \ldots, y_{k+1}\right)=1\right)$.
Since $\mathrm{P}=\mathrm{NP}$ there is a polynomial-time algorithm W such that $W\left(x, y_{1}, \ldots, y_{k}\right)=1$ iff $\exists y_{k+1} \in$ $\{0,1\}^{p_{k+1}(|x|)}\left(V\left(x, y_{1}, \ldots, y_{k+1}\right)=1\right.$. By using the former instead of the latter we get that A is in Σ_{k}^{P} and hence in P by the inductive hypothesis. If $k+1$ is even then the $k+1$-st quantifier is \forall which we can also express as $\neg \exists \neg$. We apply the $\mathrm{P}=$ NP assumption to find a polynomial-time algorithm for $\exists y_{k+1} \in\{0,1\}^{p_{k+1}(|x|)} V\left(x, y_{1}, \ldots, y_{k+1}\right) \neq 1$ and complement its answer to obtain the same result.

The proof for part 1 uses a similar idea. For any $A \in \Sigma_{i}^{P}$ for $i>k$, since $\Sigma_{k}^{P}=\Pi_{k}^{P}$ we can replace the last k quantifiers by their dual. Rather than removing the last quantifier as in part 2 , this will lead to two quantifiers of the same type next to each other of variables y_{i-k} and y_{i-k-1}. This can be described in terms of a single variable y^{\prime} having bit-length the sum of those for the other two. This is one less alternation and so $\Sigma_{i}^{P} \subseteq \Sigma_{i-1}^{P}$. By induction $\mathrm{PH} \subseteq \Sigma_{\mathrm{k}}^{\mathrm{P}}$ which implies the claim.

We now give an alternative characterization of the levels of PH using oracles for complete problems.
Theorem 1.9. $\Sigma_{2}^{P}=N P^{S A T}$ and $\Pi_{2}^{P}=\operatorname{coNPSAT}$. More generally, $\Sigma_{k+1}^{P}=N P^{\Sigma_{k} S A T}$.
Proof. We prove the case $\Sigma_{2}^{P}=$ NP ${ }^{\text {SAT }}$; the rest of the cases are similar.
$\underline{\Sigma_{2}^{\mathrm{P}} \subseteq \mathrm{NP}^{\mathrm{SAT}}}$: Let $A \in \Sigma_{2}^{\mathrm{P}}$. Then there are q_{1}, q_{2} and V such that

$$
x \in A \Leftrightarrow \exists y_{1} \in\{0,1\}^{q_{1}(|x|)} \neg \exists y_{2} \in\{0,1\}^{q_{2}(|x|)}\left(V\left(x, y_{1}, y_{2}\right) \neq 1\right) .
$$

The NPSAT algorithm guesses y_{1} and calls the $S A T$ oracle on the formula expressing $V\left(x, y_{1}, y_{2}\right) \neq$ 1 and flips its answer. Therefore $A \in \mathrm{NP}^{\mathrm{SAT}}$.
$\mathrm{NP}{ }^{\mathrm{SAT}} \subseteq \Sigma_{2}^{\mathrm{P}}$: Let $A \in \mathrm{NP}{ }^{\mathrm{SAT}}$. Let $M_{A}^{?}$ be a polynomial-time oracle NTM and let $T(n)$ be its polynomial running time. The computation of $M_{A}^{S A T}$ on input x is a tree that has branches of length $T(n)$. There are two sources of branching of $M_{A}^{S A T}$: the nondeterministic choices of $M_{A}^{?}$ itself, and the answers to the up to $T(n)$ calls to the $S A T$ oracle, each of which may depend on the previous calls. To show that $A \in \Sigma_{2}^{P}$, we use the existentially quantified variables to guess: (1) the nondeterministic guesses \vec{g} of $M_{A}^{?}$ on input x, (2) all of the formulas $\vec{\varphi}$ that are asked as questions that $M_{A}^{?}$ asks of the $S A T$ oracle, (3) the answers \vec{a} to each of the formulas asked to the $S A T$ oracle, and (4) the satisfying assignments $\vec{\alpha}$ for each of the formulas φ_{i} for which the answer $a_{i}=1$. There are universally quantified variables for potential assignments $\vec{\beta}$ for each of the formulas φ_{i} for which $a_{i}=0$. The polynomial-time verifier then checks that (a) the computation is accepting, (b) that $\varphi_{i}\left(\alpha_{i}\right)=1$ for each i such that $a_{i}=1$, and (c) that $\varphi_{i}\left(\beta_{i}\right)=0$ for each i such that $a_{i}=0$. Therefore $A \in \Sigma_{2}^{P}$.

The same method works at higher levels also, using a $\Sigma_{k} S A T$ oracle instead of a $S A T$ oracle.

2 Time-Space Tradeoffs for $S A T$

Definition 2.1. Let $\operatorname{DTIME}-\operatorname{SPACE}(\mathrm{T}(\mathrm{n}), \mathrm{S}(\mathrm{n}))$ be the set of languages L that are decided by a $T M M$ that runs in time $O(T(n))$ and space $O(S(n))$.

Now $\operatorname{DTIME-SPACE}(T(n), S(n)) \subseteq \operatorname{DTIME}(T(n)) \cap \operatorname{DSPACE}(S(n))$ but we do not know that the two are equal. For example we know that $P A T H \in D T I M E\left(n^{2}\right)$ and $P A T H \in \mathrm{NL} \subseteq$ DSPACE $\left(\log ^{2} \mathrm{n}\right)$ but we do not know whether or not $P A T H$ is in DTIME-SPACE $\left(\mathrm{n}^{\mathrm{O}(1)}, \log ^{\mathrm{O}(1)} \mathrm{n}\right)$.

Theorem 2.2 (Fortnow,Fortnow-Lipton-Van Melkebeek-Viglas). If $(1+\varepsilon+2 \delta)(1+\varepsilon)<2$ then

$$
\operatorname{NTIME}(\mathrm{n}) \nsubseteq \operatorname{DTIME-SPACE}\left(\mathrm{n}^{1+\varepsilon}, \mathrm{n}^{\delta}\right)
$$

Before giving the proof we show that
Corollary 2.3. For every $\gamma>0, S A T \notin \operatorname{DTIME-SPACE}\left(\mathrm{n}^{\sqrt{2}-\gamma}, \mathrm{n}^{\mathrm{o}(1)}\right)$.
Proof. For $\gamma>0$, we choose $\delta=\gamma / 4$ and $\varepsilon=\sqrt{2}-1-2 \gamma$. Then $(1+\varepsilon+2 \delta)(1+\varepsilon)<(\sqrt{2}-\gamma)^{2}<$ 2. If the statement of the corollary is false, as we discussed in the simulation of Turing machines by circuits (and then formulas), every language in $\operatorname{NTIME}(\mathrm{n})$ is reducible to $S A T$ in time $n \log ^{O(1)} n$ using formulas of size $O(n \log n)$, and space $\log ^{O(1)} n$. Therefore if $S A T$ could be solved in the claimed time and space bounds it would violate the theorem with the above parameters.

Proof of Theorem 2.2. Let $(1+\varepsilon+2 \delta)(1+\varepsilon)<2$ and suppose that

$$
\operatorname{NTIME}(\mathrm{n}) \subseteq \operatorname{DTIME-SPACE}\left(\mathrm{n}^{1+\varepsilon}, \mathrm{n}^{\delta}\right)
$$

We will show that this will imply a violation of the nondeterministic time hierarchy theorem. As we have seen in padding arguments we can substitute any time and space constructible function $g(n)$ for n. It follows that

$$
\operatorname{NTIME}\left(\mathrm{n}^{2}\right) \subseteq \operatorname{DTIME-SPACE}\left(\mathrm{n}^{2+2 \varepsilon}, \mathrm{n}^{2 \delta}\right)
$$

Suppose that $L \in \operatorname{DTIME}-\operatorname{SPACE}\left(\mathrm{n}^{2+2 \varepsilon}, \mathrm{n}^{2 \delta}\right)$, and let M_{L} be the associated TM deciding L that runs in time $c_{T} n^{2+2 \varepsilon}$ and space $c_{S} n^{2 \delta}$. By definition, $x \in L \Leftrightarrow$
\exists a vector y describing a sequence of configurations $C_{0}, C_{1}, \ldots, C_{n^{1+\varepsilon}}$ of M_{L}, each of which is expressible in $O\left(n^{2 \delta}\right)$ bits, such that C_{0} is the initial configuration of M_{L} on input $x, C_{n^{1+\varepsilon}}$ is an accepting configuration of M_{L} such that
$\forall i \in\left\{1, \ldots, n^{1+\varepsilon}\right\}$ there is a computation of M_{L} of length at most $c_{T} n^{1+\varepsilon}$ begining with C_{i-1} and ending in C_{i}.

The last part of the computation after the \forall is described by a function $V(x, y, i)$ that is computed by a TM that runs in time $n^{1+\varepsilon+2 \delta}$. Including the \forall, this can be expressed as $\neg \exists \neg V(x, y, i)$ and the
part its first \neg is a computation in NTIME $\left(n^{1+\varepsilon+2 \delta}\right)$. By padding with function $g(n)=n^{1+\varepsilon+2 \delta}$, the assumption that $\operatorname{NTIME}(\mathrm{n}) \subseteq \operatorname{DTIME-SPACE}\left(\mathrm{n}^{1+\varepsilon}, \mathrm{n}^{\delta}\right)$ which implies that $\operatorname{NTIME}(\mathrm{n}) \subseteq$ $\operatorname{DTIME}\left(\mathrm{n}^{1+\varepsilon}\right)$, also implies that $\operatorname{NTIME}\left(n^{1+\varepsilon+2 \delta}\right) \subseteq \operatorname{DTIME}\left(\mathrm{n}^{(1+\varepsilon+2 \delta)(1+\epsilon)}\right)$. Therefore the entire part of the computation beginning with the \forall quantifier can be done in $\operatorname{DTIME}\left(\mathrm{n}^{(1+\varepsilon+2 \delta)(1+\epsilon)}\right)$.

Adding in the existentially quantified part, it follows that $L \in \operatorname{NTIME}\left(\mathrm{n}^{(1+\varepsilon+2 \delta)(1+\epsilon)}\right)$. Therefore $\operatorname{NTIME}\left(\mathrm{n}^{2}\right) \subseteq \operatorname{NTIME}\left(\mathrm{n}^{(1+\varepsilon+2 \delta)(1+\epsilon)}\right)$ which contradicts the nondeterministic time hierarchy theorem since $(1+\varepsilon+2 \delta)(1+\epsilon)<2$.

[^0]: ${ }^{1}$ even though there are only $k-1$ switches from one kind of quantifier to the other

