
CSE 531: Computational Complexity I Winter 2016

Lecture 8: L, NL, NSPACE closed under complement
January 29, 2016

Lecturer: Paul Beame Scribe: Paul Beame

1 L, NL, NL-completeness

We have complexity classes

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP.

Last class, we considered the notion of PSPACE-completeness and the potential for separations
of P from PSPACE for which polynomial-time reductions are appropriate. We now consider po-
tential separations of classes within P and from NP. For these complexity classes, the notion of
polynomial-time mapping reductions is too coarse since it does not distinguish L from P. We need
a finer notion of reduction.

Definition 1.1. A ⊆ {0, 1}∗ is logspace mapping reducible to B ⊆ {0, 1}∗, A ≤L B iff there
is function f : {0, 1}∗ → {0, 1}∗ computable in space O(log n) such that for all x ∈ {0, 1}∗,
x ∈ A ⇔ f(x) ∈ B.

Note that this definition is more standard than the equivalent definition given in the text but it uses
a write-only output tape that is not included in the space bound. Since any log-space computation
runs in polynomial time the following is immediate.

Proposition 1.2. If A ≤L B then A ≤P B.

Lemma 1.3. 1. If A ≤L B and B ≤L C then A ≤L C.

2. If A ≤L B and B ∈ L then A ∈ L.

3. If A ≤L B and B ∈ NL then A ∈ NL.

Proof. We prove part 1. The other parts follow along the same lines. Let f be the reduction
showing that A ≤L B and Mf be the associated log-space TM computing f . Let g be the reduction
showing that B ≤L C and Mg be the associated log-space TM computing g. As with the case of
≤P , the reduction showing A ≤L C is g ◦ f . However we cannot simply run Mf followed by Mg

as we did for the case of ≤P because this would require that the output of y = f(x) on which Mg

is run be written on a tape that can be read and in general it is too long. Instead, the computation

1

of g ◦ f proceeds by producing each bit of y only as it is needed and recomputing f to obtain other
bits.

The simulation will maintain the work tapes of Mf and of Mg as well as an index i representing
the position of the read head of Mg on inout y and an index j representing the position of the write
head of Mf on its output tape. More precisely, the algorithm to compute g ◦ f is as follows: On
input x, set i = j = 0 and run Mg. For each step of Mg, run Mf on input x ignoring all outputs
except when j = i. Use the output at position i to determine the action of the next step of Mg

and update i accordingly. The total space required is O(log n) plus that of Mf and Mg which is
O(log n) overall.

Definition 1.4. 1. B is NL-hard iff A ≤L B for all A ∈ NL.

2. B is NL-complete iff (a) B ∈ NL and (b) B is NL-hard.

Lemma 1.5. PATH is NL-complete.

Proof. We already have shown that PATH ∈ NL. We name the nondeterministic O(log n)-
space procedure that we used to guess and verify a path from s to t of length at most i = n by
CheckPathG(s, t, i). We will find this useful later.

It remains to show that PATH is NL-hard. Let A ∈ NL and MA be a normal form O(log n)-
space NTM that decides A. As before we have x ∈ A if and only if there is a path in GMA,x

from C0 to Caccept. Since MA is logspace, nodes of GMA,x can be specified by O(log n) bits each.
The reduction simply is x 7→ [GMA,x, C0, Caccept] which clearly is correct. It can be computed in
O(log n) space since each edge simply requires checking, for each pair C, D of configurations of
MA, whether C yields D in one step of MA. Therefore A ≤L PATH .

There are other path problems that are also important for complexity. We can also define
1PATH = {[G, s, t] | G is a outdegree 1 graph with a path from s to t}
UPATH = {[G, s, t] | G is an undirected graph with a path from s to t}

It is immediate 1PATH ∈ L since the algorithm simply needs to follow the unique path in G
from s and see if it encounters t. Somewhat surprisingly, the undirected graph case has similar
complexity. This is a difficult theorem that is beyond the scope of this class. It shows that the
distinction between L and NL is precisely the difference between undirected and directed graph
reachability.

Theorem 1.6 (Reingold 2005). UPATH ∈ L.

So far, we have used just one notion of reduction when we have defined completeness for a com-
plexity class. In general one can associate many notions of reduction for a given complexity class
and can talk about a problem being complete for a class C under reductions of type≤′. (Though to
be useful, the notion ≤′ should not be too powerful.)

2

Thus the Cook-Levin Theorem shows that SAT is complete for NP under ≤P reductions. (Also
sometimes referred to as ≤P -complete for NP.) With the more refined notion ≤P we can also
define the notions of complete for NP under ≤L reductions (or logspace-complete for NP) and
complete for P under ≤L reductions (logspace-complete for P).

Returning to the simulations of Turing machine computations by circuits and the reductions given
in the proof of the Cook-Levin theorem, one can see that the construction of the circuit is very
local, requiring only indices of time and Turing machine tape position. It follows that we have the
following results using the old constructions.

Theorem 1.7 (Cook). SAT is complete for NP under ≤L reductions.

Theorem 1.8 (Ladner). CIRCUIT -V ALUE is complete for P under ≤L reductions.

2 Nondeterministic Space is Closed Under Complement

In analogy with coNP we can also define coNL = {L | L ∈ NL}. More generally coNSPACE(S(n) =
{L | L ∈ NSPACE(S(n))}.

Just as PATH is NL-complete, the following language
PATH = {[G, s, t] | directed graph G does not have a path from s to t}
is a complete problem for coNL. (Strictly speaking, PATH should contain inputs that are not
well-formed but they can be easily detected in deterministic logspace so we ignore them.)

Theorem 2.1 (Immerman-Szelepscenyi). NL = coNL.

Proof. It suffices to show that PATH ∈ NL. On input [G, s, t] let G = (V,E) and compute
n = |V |We begin with an assumption and then we will clear that assumption.

Suppose that the algorithm has access to the exact value N , the number of vertices of G reachable
from s. The idea for showing that there is no path to t will be to guess and verify N other vertices
of G that have paths from s and hence t does not.

The algorithm is as follows:

count← 0
for all v ∈ V − {t}

Guess whether v is reachable from s
if Guess=“yes” then

if CheckPathG(s, v, n) then
count← count + 1

else

3

reject
endif

endif
end for
if count = N then accept

It clearly only needs to retain count, N , v, and n, plus the space for CheckPathG which is clearly
O(logn) space in total.

It remains to nondeterministically compute N . We write Vi for the set of nodes of G reachable
from s in at most i steps and Ni = |Vi|. Clearly V0 = {s} and N0 = 1. We now how to compute
Ni from Ni−1 for i ≥ 1. The general idea to confirm for each vertex whether or not it is in Vi.
This is easy to do for elements of Vi. To confirm that it is not in Vi the algorithm checks that it is
not adjacent to any element of Vi−1. It needs the count Ni−1 to ensure that it has considered every
element of Vi−1.

count← 0
for all v ∈ V

Guess whether v is in Vi

if Guess=“yes” then
if CheckPathG(s, v, i) then

count← count + 1
else

reject
endif

else
if Guess=“no” then
oldcount← 0
for all u ∈ V

Guess’ whether u is in Vi−1
if Guess’=“yes” then

if CheckPathG(s, v, i− 1) then
oldcount← oldcount + 1
if (u, v) ∈ E then reject;
else

reject
endif

endif
end for
if oldcount 6= Ni−1 then reject;

end for
Ni ← count

4

The algorithm requires only count, oldcount, u, v, i, Ni−1 and Ni in addition to the space of
CheckPathG. After each iteration, i is incremented. At the end, N = Nn.

Corollary 2.2. For all space constructible S(n) ≥ log2 n, NSPACE(S(n)) = coNSPACE(S(n)).

Proof. The argument is a padding argument similar to the one by which we previously showed
that if clP = NP then EXP = NEXP. Let k(n) = 2S(n). Suppose that A ∈ NSPACE(S(n)) and
let MA be the space O(S(n)) NTM for A. Then define Apad = {(x, 1k(|x|)) | x ∈ A}. Since
log2 k(n) = S(n), we can decide Apad by the following NTM M ′: on input y = (x, 1i), use
the space constructibility of S to check that i = k(|x|) and, if so, run MA on input x. MA uses
space at most cS(|x|) for some constant c. By construction, this is O(log |y|) so M ′ runs in space
O(log n), hence Apad ∈ NL. By the above theorem Apad ∈ coNL, i.e. Apad ∈ NL. Therefore
there is an O(log n)-space NTM M ′′ that decides Apad. The NTM for Apad on input x now uses
the space constructibility of S(n) to compute k(|x|) and acts as if it has appended 1k(|x|) onto x
and simulates M ′′ on input (x, 1k(|x|)). Note that it cannot actually add the 1’s because there are
two many of them (and one cannot change the input) but instead it maintains a counter of the head
position of M ′′ when it is not on x and returns value 1 for each such position when needed. The
space of the algorithm is O(S(n)) as required.

3 The Polynomial-time Hierarchy

So far we have considered NP problems such as

INDSET = {[G, k] | G has an independent set of size ≥ k}.

However, this does not characterize all reasonable related problems such as

EXACT -INDSET = {[G, k] | the largest independent set of G has size = k}.

In other words,

[G, k] ∈ EXACT -INDSET ⇔ ([G, k] ∈ INDSET ∧ [G, k + 1] /∈ INDSET)

In particular, if Indep(U,G) denotes the predicate that U is an independent set of G, then we can
say that [G, k] ∈ EXACT -INDSET if and only if

∃U ⊆ V (|U | = k ∧ Indep(U,G)) ∧ ∀U ′ ⊆ V (|U ′| = k + 1→ Indep(U,G)).

Similarly we can define

MINDNF = {[ϕ, k] | ϕ is a DNF that has an equivalent DNF of size ≤ k}.

5

We can again express membership in terms of a quantified formula

∃ϕ′∀x ∈ {0, 1}n(|ϕ′| ≤ k ∧DNF (ϕ) ∧DNF (ϕ′) ∧ (ϕ(x) = ϕ′(x))).

These are problems that have both NP and coNP aspects.

Definition 3.1. Define the class of languages ΣP
2 to be the class of languages A ⊆ {0, 1}∗ such

that there are polynomial bounds p1 and p2 and a polynomial-time computable verifier V such that

x ∈ A ⇔ ∃y1 ∈ {0, 1}p1(|x|)∀y2 ∈ {0, 1}p2(|x|) V (x, y1, y2) = 1.

We can define ΠP
2 = {L | L ∈ ΣP

2 }. There is a similar definition of ΠP
2 as the set of languages A

such taht
x ∈ A ⇔ ∀y1 ∈ {0, 1}p1(|x|)∃y2 ∈ {0, 1}p2(|x|) V (x, y1, y2) = 1.

With these definitions we see that MINDNF ∈ ΣP
2 and, since the quantified parts of EXACT -INDSET

are independent of each other, EXACT -INDSET ∈ ΣP
2 ∩ ΠP

2 .

We will discuss more of the hierarchy in the next class.

6

	L, NL, NL-completeness
	Nondeterministic Space is Closed Under Complement
	The Polynomial-time Hierarchy

