
CSE 531: Computational Complexity I Winter 2016

Lecture 7: PSPACE-completeness, Savitch’s Theorem
January 27, 2016

Lecturer: Paul Beame Scribe: Paul Beame

1 Space Complexity

In the last class we proved the following theorem.

Theorem 1.1. For all space-constructible S(n) ≥ log2 n,

NTIME(S(n)) ⊆ DSPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n))),

where DTIME(2O(S(n))) =
⋃

cDTIME(2cS(n)).

Definition 1.2. We can now define some specific space complexity classes:

L = DSPACE(log n) “logspace”
NL = NSPACE(log n) “nondeterministic logspace”

PSPACE =
⋃
k≥1

DSPACE(nk)

NPSPACE =
⋃
k≥1

NSPACE(nk)

Applying the theorem to these definitions and using what we know already, we obtain:

Corollary 1.3.

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP.

We consider some examples of functions computable using only logarithmic space:

MAJORITY = {x | x has at least as many 1’s as 0’s} ∈ L

since the TM need only maintain the two counters and compare them at the end of the computation.
We can also consider functions such as Sort where

Sortn : {1, . . . , n2}n → {1, . . . , n2}n

1

which takes a list n integers represented in binary (2 log 2n bits each) and outputs them in order
from smallest to largest. Note that this is only possible because the output tape is not counted in the
space bound. (Note that the configuration graph does not contain the output tape since it is never
read.) Though most sorting algorithms such a Mergesort, Quicksort, Radix sort require a linear
amount of space we can compute Sort in logarithmic space using one of the simplest algorithms,
Selection sort. To implement Selection sort one only needs:

• an index i to the currently scanned element in the list

• the largest value vo that has already been output

• the candidate next output value, which is the value of the smallest value vmin > vo scanned
so far.

• the number nmin of times that vmin has been observed so far.

which is only O(log n) bits on the work tape.

Define PATH = {[G, s, t] | G is a directed graph with a path from s to t}.

Lemma 1.4. PATH ∈ NL.

Proof. The general idea is for the NTM to guess and verify the path from s to t in G but there is
a problem with doing this as we have done for NP since there is not enough room to write down a
guess.

The solution is to start with u = s repeatedly guess the next vertex v on the path, verify that
(u, v) is an edge of G, and then set u = v. If v = t is ever reached then the algorithm halts and
accepts. This has one problem: if the graph has a cycle reachable from s, then the algorithm may
run forever. To avoid this, the algorithm first computes n, the number of vertices in G and stops
there search after n edges have been traversed. The total space is now O(log n).

Just as for time, a small amount of additional space allows us to compute new things.

Theorem 1.5. If g ≥ log2 n is a space-constructible function and f(n) is o(g(n)) then

SPACE(f(n)) (SPACE(g(n)) and NSPACE(f(n)) (NSPACE(g(n)).

Proof. Both proofs follows a similar outline to the deterministic time hierarchy theorem using

D = {[M]01k | M on input x = [M]01k does not accept x in g(|x|) space}

but are much simpler since (1) one can simulate S(n) space-bounded TMs with a universal TM
that uses only O(S(n)) space on a single tape and the same applies to universal NTMs and (2) one
can complement the outcome of a nondeterministic computation by trying all computation bounds
without only a constant factor increase in the space bound.

2

Corollary 1.6. L 6= PSPACE and NL 6= NPSPACE.

We will show later in this lecture that PSPACE = NPSPACE. It is, however, consistent with our
knowledge that P = PSPACE and L = NP. Refuting either of these would be easier than proving
that P 6= NP and might be a step towards it.

Definition 1.7. (1) B is PSPACE-hard iff ∀A ∈ PSPACE, A ≤P B.

(2) B is PSPACE-complete iff
(a) B ∈ PSPACE, and
(b) B is PSPACE-hard.

PSPACE-complete problems include a quite wide variety of questions of practical interest, for
example:

• Safety properties of computer systems: “Does this computer systems get into a bad state?”

• Planning problems in AI: “Is there a plan involving a sequence of allowable actions that lets
me reach a goal state?”

• Existence of winning strategies in games, e.g. n× n-Checkers.

We can define a generic PSPACE-complete problem just as we did with EXP -COM , but we are
interested in more natural examples.

Quantified Boolean Formulas (QBF) We can define first order logic with quantifiers over bit
variables xi ∈ {0, 1}. In this way, if ϕ is a Boolean formula then we can give alternative definitions
of problems we have already considered using QBF:

[ϕ] ∈ SAT ⇔ ∃x1 . . . ∃xnϕ(x1, . . . , xn) is true and
[ϕ] ∈ TAUT ⇔ ∀x1 . . . ∀xnϕ(x1, . . . , xn) is true.

In general, formulas in QBF are expressible as

Q1x1Q2x2 . . . Qnxnϕ(x1, . . . , xn)

where ϕ is a Boolean formula, each Qi ∈ {∃,∀} and each xi ∈ {0, 1}.

We therefore have the definition:

TQBF = {[Φ] | Φ is a QBF that evaluates to true}.

Theorem 1.8. TQBF is PSPACE-complete.

3

Proof. We first prove that TQBF is in PSPACE. To do this, on inputQ1x1Q2x2 . . . Qnxnϕ(x1, . . . , xn)
consider the complete binary tree that branches on x1, . . . , xn in turn. The algorithm will be
the analogue of the DFS brute force search of all branches in the case of satisfiability or tau-
tology which computes the formula’s value on the assignment at each of the leaves. On input
Φ = Q1x1Q2x2 . . . Qnxnϕ(x1, . . . , xn) The general recursion Eval maintains an assignment ~b
that is initially empty.

Eval(Φ, i):
if i = n+ 1 then return ϕ(~b)
else

bi ← 0
if Qi = ∃ then

if Eval(Φ, i+ 1) = true then
return true

else
bi ← 1
return Eval(Φ, i+ 1)

endif
elseif Qi = ∀ then

if Eval(Φ, i+ 1) = false then
return false

else
bi ← 1
return Eval(Φ, i+ 1)

endif
endif

endif.

Clearly this algorithm only needs to maintain ~b and the current value of i in addition to its input
(except for computing ϕ(~b)) and its total space use is polynomial (even linear) in the input size.

It remains to show that TQBF is PSPACE-complete. Let A ∈ PSPACE. Therefore there is a
normal-form TM MA that decides A using space at most S(n) that is O(nk) for some k.

T (n) be an upper bound on the maximum number of configurations possible for MA on inputs
of length n. By construction, T (n) is at most 2cS(n) for some constant c depending on A. We
therefore have:

x ∈ A⇔there is a path in GMA,x from C0 to Caccept

⇔there is a path of length ≤ T (|x|) in GMA,x from C0 to Caccept

4

The general idea of the argument is to define a QBF formula ψt that takes the (binary encodings of)
two configurations C andD ofGMA,x expresses that there is a path inGMA,x of length≤ t between
them. The reduction will map x to φT (|x|)([C0], [Caccept]). It remains to define the formulas φt. Now

ψ1([C], [D]) ≡ ([C] = [D]) ∨ ϕMA,x([C], [D])

where ϕM,x is the size O(S(n)) CNF formula expressing the edge relation on GM,x. (For con-
venience we drop the encoding brackets around configurations from now on and simply write
ψt(C,D) instead.) We will also assume that t is a power of 2 and round T up to the nearest power
of 2 since we consider paths with at most T steps.

We know that there is a path from C to D of length at most t if and only if there is some middle
vertex Cm such that there are paths of length at most t/2 from C to Cm and from Cm to D.
Therefore would could try to define ψt(C,D) to be ∃Cm(ψt/2(C,Cm)∧ ψt/2(Cm, D)) where ∃Cm

expresses O(S(n)) existential Boolean quantifiers. Unfortunately, this is not sufficiently efficient;
we can see that the size of ψt is roughly O(S(n)) plus 2 times the size of ψt/2. When expanded out
we get that the total size of ψT would be roughly Θ(S · T) which is exponential and certainly not
polynomial-time computable. However, we have only used ∃ quantifiers so we have much more
flexibility. There is a trick that lets us express an equivalent statement using only one copy of ϕt/2.
Define

ϕt(C,D) ≡ ∃Cm∀C1∀C2(((C1 = C) ∧ (C2 = Cm)) ∨ ((C1 = Cm) ∧ (C2 = D))

→ ψt/2(C1, C2).

The size of ψt is now that of ψt/2 plus O(S(n)). The total size is then O(S(n) log T (n)) which is
O(S2(n)), i.e. O(n2k) which is polynomial. It is also very easy to construct ψT given input x and
the reduction is polynomial time.

Theorem 1.9 (Savitch’s Theorem). For any S(n) ≥ log2 n, NSPACE(S(n)) ⊂ DSPACE(S2(n)).

Proof. We use the same idea as in the proof of the PSPACE-completeness of TQBF . (The idea
originated with Savitch’s Theorem which pre-dates NP-completeness.) Let A ∈ NSPACE(S(n))
and let MA be an O(S(n)) space normal-form NTM deciding membership in A. As before we
have

x ∈ A ⇔ there is a path of length ≤ T (|x|) in GMA,x from C0 to Caccept

where T (n) is 2cS(n) for some constant c (since S(n) ≥ log2 n) and we are going to use the idea of
reuse of resources on the two sides of a middle configuration Cm.

Define the recursive function Reach(i, C,D) which will output 1 iff there is a path of length at
most 2i from C to D in GMA,x as follows.

5

Reach(i, C,D):
if i = 0 then return 1 if C = D or if C can lead to D in 1 step of MA

if i ≥ 1 then
for all Cm in GMA,x

if Reach(i− 1, C, Cm) = 1 and Reach(i− 1, Cm, D) = 1 then return 1
endfor
return 0

The largest i for which we will need to call Reach is at most cS(n) since T ≤ 2cS(n). The depth of
recursion for a call of Reach(i, C,D) is i and the amount of storage need on the stack is only the
sizes needed to store a constant number of configurations plus the value of i. This totals O(S(n)
per level and O(S(n)) levels for O(S2(n)) overall.

Thus far, we have needed to be able to compute the value of i = cS(n) for the first call, which
would require that S(n) be constructible in space O(S2(n)). However, we can also do this without
needing to construct S(n). Indeed the algorithm just needs to knowMA and does not need to know
the bound S(n) at all.

The general idea is that the algorithm can try all space bounds starting at space S = 1, 2, . . .,
incrementing the space bound by 1 each time. It will be looking at larger and larger configurations.
If it finds a path using space bound S then the input should be accepted. However, if it does not find
a path, then it is possible that the space bound S was simply too small. The idea will be to check
this also at every step. At the bottom level of recursion, whenever it is checking Reach(0, C,D)
the algorithm will check whether or not any configuration reachable from C in 1 step is actually
larger than S. If so, it will know that the computation using space bound S is not sufficient to reject
the input and the algorithm must increase the space bound. If S was sufficient and a path was not
found with space bound S, then the algorithm rejects. Because MA has space bound O(S(n)), the
algorithm will eventually finish with S at most cS(n) as required.

Corollary 1.10. PSPACE = NPSPACE.

6

	Space Complexity

