
CSE 531: Computational Complexity I Winter 2016

Lecture 5: Circuit Lower bounds and Hierarchy Theorems
January 20, 2016

Lecturer: Paul Beame Scribe: Paul Beame

We have many uniform complexity classes P ⊆ NP ⊆ EXP ⊆ NEXP, DTIME(T(n)) and
NTIME(T(n)) for all bounds T (n). We have non-uniform complexity classes SIZE(S(n)) for
all bounds S(n). However, it is consistent with what we have seen so far that all the uniform
complexity classes are the same, as are all the non-uniform complexity classes.

We now show that additional resources allow us to compute new things. We begin with circuit
complexity since it is a bit simpler to analyze for this question.

1 Circuit Lower Bounds

We previously saw that there are DNF circuit families of size O(n2n) for every Boolean function.
On your homework you are showing that for general circuits O(2n/n) suffices. We first show that
this is asymptotically optimal.

Theorem 1.1. Almost all (a 1 − o(1) fraction of) functions fn : {0, 1}n → {0, 1} require circuit
size 2n/n− o(2n/n).

Proof. The basic idea is to count the number of functions of circuit size at most S and compare it
to the total number of functions on n bits.

We begin by counting the number of circuits of size at most S:

We can assume without loss of generality that S ≥ n+ 2. A circuit of size at most S has n inputs
x1, . . . , xn as well as the constants 0 and 1. Each of its S gates has its inputs from among the other
gates, as well as these n+ 2 other values.

A gate can be described by its two inputs and its gate type from among {∧,∨,¬}. There are at
most 3(S + n+ 2)2 possibilities per gate. The circuit can then be described by its S gates and the
name of the output, for which there are S + n+ 2 possibilities. (Note that if the circuit size is less
than S, we simply add dummy gates that are not connected to the output.)

Therefore there are at most 3S(S + n+ 2)2S+1 different circuits in total.

However, this over-counts the number of different functions that these circuits can compute. The
function stays the same even if we permute the gate numbers, which changes the circuit description.

1

Therefore the number of different functions computed by circuits of size at most S is at most

3S(S + n+ 2)2S+1/S! ≤ 3S(2S)2S+1/S! since S ≥ n+ 2

≤ 3S(2S)2S+1eS/SS using the fact that S! ≥ (S/e)S for all S ≥ 1

≤ cSSS+1

for some constant c that is roughly 6e.

Now the number of functions f : {0, 1}n → {0, 1} is the same as the number of truth tables, binary
vectors of length 2n; i.e., 22n .

22
n
/n is only a o(1) fraction of 22n . So, if cSSS+1 < 22

n
/n then circuits of size at most S can only

compute a o(1) fraction of all functions. Therefore, almost all functions require circuit size S with

cSSS+1 ≥ 22
n

/n.

Taking logarithms of both sides we have

S log2 c+ (S + 1) log2 S ≥ 2n − log2 n.

Now since we can assume that S ≤ 2n and hence log2 S ≤ n, we obtain

S log2 c+ (S + 1)n ≥ 2n − log2 n.

Hence
S ≥ 2n − n− log2 n

n+ log2 c
.

This implies that S ≥ 2n/n− o(2n/n) which is what we wanted to show.

From this we derive a hierarchy for circuit complexity based on your homework solution.

Corollary 1.2. Let c be the constant such all functions f : {0, 1}n → {0, 1} have complexity at
most c2n/n. If S : N→ N and S is o(2n/n) then SIZE(S(n)) (SIZE(4cS(n)).

Proof. Let m ≤ n be the smallest integer such that 2m−1/m− 1 ≤ 2S(n) < 2m/m. We consider
the set of functions that depend only on the first m bits. By definition 2m/m ≤ 4S(n) and hence
by the upper bound, every function on the first m bits can be computed in size at most 4cS(n).
However, by Theorem 1.1, size S(n) ≤ 2m−1/m is not large enough to compute all such functions.

2

2 Hierarchy Theorems for DTIME and NTIME

Theorem 2.1. Let f, g : N→ N. If g is time-constructible and f(n)log2f(n) is o(g(n)) then

DTIME(f(n)) (DTIME(g(n)).

Proof. The general idea of the proof follows by a variant of the diagonalization that is used to prove
the undecidability of the halting problem. That argument uses a listing of all Turing machines
M1,M2, . . ., associates a distinct input (either i or [Mi]) with each Turing machine and creates a
“diagonal” language that differs from the result of Mi on input i (or [Mi]).

For the present argument we need a listing that captures all O(f(n)) time-bounded Turing ma-
chines but does not include all Turing machines running in time O(g(n)).

On input x of length n, the O(g(n)) time-bounded algorithm begins by computing g(n) using
the time-constructibility of g and then computing h(n) = g(n)/ log2 g(n). By assumption that
f(n) log2 f(n) is o(g(n)), f(n) is o(h(n)). That is, h(n) is eventually larger than cf(n) for any
constant c. That is, for all c > 0, there is an nc such that n ≥ nc implies that h(n) ≥ cf(n).

The fact that we do not know a priori what size input will allow h(n) to be larger than cf(n) makes
it necessary to dedicate an infinite set of input strings to each possible Turing machine in order to
ensure that the input length on which we make the diagonal language different is large enough.

The diagonal language D we define is

D = {[M]01k | k ≥ 0 and M does not accept x in at most h(|[M]01k|) steps}.

We first show that D /∈ DTIME(f(n)): Let M be any Turing machine that runs in time at most
cf(n) for some constant c. Let nc be the constant such that h(n) ≥ cf(n) for all n ≥ nc. Because
x = [M]01nc is long enough, the time bound h(|x|) is no constraint on M ’s behavior on input x.
Therefore x ∈ D if and only if M does not accept x. Therefore D is not the language decided by
M .

We now need to show that D ∈ DTIME(g(n)). Here is the description of the algorithm: On
input x first compute h(|x|) as above on an extra “clock” tape using time O(g(|x|)). Then reject
if x is not of the form [M]01k, extract [M] from the input, and then run the universal Turing
machine U on input x and [M], while subtracting 1 from the clock tape for each simulated step of
M . The computation stops if the clock tape reaches 0. The simulation takes O(h(|x|) log h(|x|))
steps, which is O(g(|x|)). If M accepts during this time, the machine for D rejects; otherwise, it
accepts.

Corollary 2.2. P 6= EXP.

There is a similar hierarchy for nondeterministic computation. It is sharper for small time bounds
but degrades noticeably as the functions grow.

3

Theorem 2.3. Let f, g : N→ N. If g is time-constructible and f(n+ 1) is o(g(n)) then

NTIME(f(n)) (NTIME(g(n)).

Proof. We describe the differences between this argument and that for the deterministic time hi-
erarchy. In this case, the universal Turing machine is a nondeterministic machine U ′ that on input
x, NTM [M] and time bound T simulates M on input x for at most T steps. As you have shown
on your homework, U ′ takes time O(T). This eliminates the extra log2 f(n) factor allows the sim-
ulation to use the function g(n) instead of the function h(n) used for the deterministic hierarchy
theorem.

However, because M is an NTM, we cannot simply have the simulation flip the answer along each
path. (If there are both accepting and rejecting computation paths, then flipping the answers will
merely leave the input as accepted.) Simulating and flipping the answer for an input x of length n
in general requires 2O(f(n)) time which is at most time 2g(n) for sufficiently large n.

The trick to making this all work is a form a “lazy” diagonalization that only flips the answer by
using exponentially larger inputs. The analog of each input of the form [M]01k in the diagonal
language D will use a consecutive sequence of input lengths from n to 2g(n). (We can easily
assume that the length n (or indeed any input with length in the range from n to 2g(n) is uniquely
decodable as a pair [M] and k. All inputs in the range we consider will be associated with fooling
M .) For convenience, the only inputs in this range that we consider for membership in D will be
1n, 1n+1, . . . , 12

g(n) .

For m in the range n ≤ m ≤ 2g(n), the NTM unique decodes input 1m to find n and the NTM [M].
It then computes g(m) on O(g(m)) steps using the time-constructibility of g.

If n ≤ m < 2g(n) the NTM defining D computes g(m) in O(g(m)) steps using the time-
constructibility of g. It simulates NTM [M] on input 1m+1 for g(m) steps and does exactly what
M does. (It does not flip the answer.) Note that since f(n + 1) is o(g(n)), for large enough m,
cf(m + 1) ≤ g(m) and so the time bound does not restrict the computation. However, when
m = 2g(n), the NTM for D computes g(n) and does a deterministic simulation of NTM M on
input 1n for g(n) steps and flips the answer.

We now argue that if n is large enough so that g(n) ≥ cf(n) where the running time of NTM M

on is at most cf(n), then M and D disagree about some input in the range 1n, . . . , 12
g(n): Suppose

that M and D agree on all strings 1m with n ≤ m < 2g(n). By construction D(1m) = M(1m+1)
for all m in this range. In addition, since D and M agree, then D(1m) = M(1m) for all m with
n ≤ m < 2g(n); in particular, M(1n) = M(12

g(n)
). However, by construction, D(12

g(n)
) 6= M(1n)

and so D(12
g(n)

) 6= M(12
g(n)

) which implies that D is not decided by M with running time g(n)
(and hence not with time bound O(f(n+ 1)) either).

The rest of the proof is analogous to the deterministic case.

Corollary 2.4. NP 6= NEXP.

4

	Circuit Lower Bounds
	Hierarchy Theorems for DTIME and NTIME

