
CSE 531: Computational Complexity I Winter 2016

Lecture 4: More NP-completeness, NP-search, coNP
January 15, 2016

Lecturer: Paul Beame Scribe: Paul Beame

1 More NP-completeness

On Wednesday we showed that CIRCUIT -SAT ≤p 3SAT ≤ INDEPENDENT -SET were
all NP-complete. We now give a sampler of NP-completeness proofs for other problems.

We first observe that NP-completeness immediately follows forCNFSAT and SAT since 3SAT ≤p

CNFSAT ≤p SAT . Note that 3SAT ⊂ CNFSAT ⊂ SAT . The reduction in each case is al-
most the identity (though of course it can’t be since the sets are different). The only issue is that we
have to modify satisfiable formulas that are not in 3CNF. For the 3SAT ≤p CNFSAT reduction
we simply map any input that is not in 3CNF to some fixed object like x ∧ ¬x and so the same for
the CNFSAT ≤p SAT reduction for formulas not in CNF.

Definition 1.1. A set U ⊆ V is a clique in undirected graphG = (V,E) iff all edges on the vertices
in U are present in E. A set C ⊆ V is a vertex cover of G iff C intersects every edge of E. The
complement G of a graph G = (V,E) is given by G = (V,E) where (u, v) ∈ E for u 6= v ∈ V iff
(u, v) /∈ E.

Recall that CLIQUE = {[G, k] | G has a clique of size ≥ k} and define
V ERTEX-COV ER = {[G, k] | G has a vertex cover of size ≤ k}.

Lemma 1.2. Let U ⊆ V where G = (V,E). U is a clique in G⇔ U is an independent set in G
⇔ V − U is a vertex cover of G.

Proof. The first equivalence is immediate by definition. The second follows by observing that
being independent means covering at most one vertex from any edge.

Corollary 1.3. CLIQUE and V ERTEX-COV ER are NP-complete.

Proof. Clearly both are in NP where the certificate is the set given in the definition. From the
lemma, the map [G, k] 7→ [G, k] which is clearly polynomial-time computable is a reduction which
shows that INDEPENDENT -SET ≤p CLIQUE. Also by the lemma, the map [G, k] 7→
[G, n−k] where n = |V | is a polynomial-time mapping reduction proving INDEPENDENT -SET ≤p

V ERTEX-COV ER.

1

Components of an NP-completeness proof To show that B is NP-complete:

1. Show that B ∈ NP:

(a) What is the form of the guess/certificate/proof/witness?

(b) How is the witness verified?

(c) Why is that verification polynomial time?

2. Show that A ≤p B for some known NP-complete problem A:

(a) Define the mapping f from inputs of the form suitable to A to those suitable for B.

(b) Why is f polynomial-time computable?

(c) Show that x ∈ A implies f(x) ∈ B
• Describe how to convert a witness w that x ∈ A to a witness that f(x) ∈ B.

(d) Show that f(x) ∈ B implies x ∈ A
• Describe how to convert a witness w′ that f(x) ∈ B to a witness that x ∈ A.

So far, after the Cook-Levin Theorem we have seen several very simple reductions, and one some-
what clever one (3SAT ≤p INDEPENDENT -SET). Reductions like the latter one are often
called “gadget reductions” because of the objects present in the reductions. When 3SAT is a
starting point for a gadget reduction, one will want to have a “Boolean part”, something about the
problem that reflects independent 0-1 decisions for the truth assignment, as well as a “clause part”
that reflects the constraints that each clause imposes. We now give a couple of examples.

Definition 1.4. A k-coloring of a graph G = (V,E) is a map χ : V → {1, . . . , k} such that
(u, v) ∈ E implies that χ(u) 6= χ(v).

Let COLOR = {[G, k] | G has a k-coloring} and
kCOLOR = {[G] | G has a k-coloring}. Clearly both are in NP since the witness is the coloring
χ and verification only requires checking each edge of G.

Theorem 1.5. 3COLOR is NP-complete.

Proof. Since we already know that both are in NP, it suffices to show that 3SAT ≤p 3COLOR.
For the construction of the mapping reduction f that produces a graph G given a 3CNF formula
φ, we begin with a base triangle having vertices labelled T , F , and O, respectively. For any 3-
coloring we can identify each of the 3 colors with the label of the vertex of this triangle that is
colored with that label.

For every variable xi, we have a separate edge with endpoints labeled by the literals xi and xi,
respectively, both with edges forming a triangle with the O vertex of the base triangle. In this way
every 3coloring assigns the color of T or F to node xi and the complement color to xi.

2

It remains to add gadgets for the clauses. For each clause we have a separate subgraph on 6 vertices,
3 “inner” ones forming a triangle and 3 “outer” ones, each connected to a different inner vertex
of the gadget. Each of the 3 outer vertices is connected by an edge to the T vertex in the base
triangle. This means that each outer vertex can only be colored either O or F . Each outer vertex
of the gadget for each clause Cj is also connected to the corresponding literal node that appears in
clause Cj , one per vertex.

This completes the definition of the output of the function f . It is computable in nearly linear time
in the size of φ.

It remains to argue correctness. First, suppose that φ is satisfiable and let α be a satisfying assign-
ment for φ. We use this to define a 3-coloring χ by setting the color of node xi to be the same as
the truth value of xi under α, and the color of node xi to be its complement. Since α satisfies each
clause Cj of φ, there is some literal of Cj that has value T . This means that we can assign the outer
node of the gadget for Cj the color F . We color the other two outer nodes color O and complete
the coloring on the inner triangle by assigning the color of O to the inner node connected to the
outer node labelled F , and assigning the other two inner nodes the colors T and F . Clearly χ is a
3-coloring of G.

Now suppose that G has a 3-coloring χ. Then, as described above, χ yields a truth assigment α
that can be read off by comparing the colors assigned to the nodes labelled xi to the color of base
node T . It remains to show that α satisfies φ. Since χ has to assign the color used at base node
O to one of the three vertices in the inner triangle for each gadget, one of the outer vertices for
each gadget must not use color O and since the outer vertices are connected to base node T , that
outer vertex must have the color of base node F . The literal of the clause associated with that outer
vertex must then have the same color as T since the literal nodes are all connected to base node O.
Therefore the assignment satisfies each clause of φ.

Definition 1.6. A Hamiltonian path (or Hamiltonian cycle) is a simple path (respectively cycle)
that visits all vertices of G. (That is, it visits each vertex of G exactly once.)

Let DHAMPATH = {[G] | G is a directed graph that has a Hamiltonian path}
and DHAMCY CLE = {[G] | G is a directed graph that has a Hamiltonian cycle}.

Theorem 1.7. DHAMPATH and DHAMCY CLE are NP-complete

Before proving the hardness we note the subtlety of what can make a problem NP-complete. The
corresponding notions of Eulerian paths and cycles, in which each edge must be visited exactly
once, have easy polynomial-time algorithms since connectedness and simple degree constraints
suffice to determine the outcome.

Proof. Again, membership in NP is immediate since a witnessing path or cycle is easy to check.
For NP-hardness we again show reductions from 3SAT : On input [φ], the basic graph produced

3

consists of directed diamonds chained one above another, one for each variable xi, with a path
involving a series of nodes connected in both directions between the two middle level vertices of
each diamond. In addition to the diamonds we include an extra top vertex connected to the top of
the diamond for x1 and an extra bottom vertex connected to the bottom of the diamond for xn. The
only difference between the reductions will be an optional edge from the bottom vertex to the top
vertex.

The directed path/cycle must traverse the graph from top to bottom and in order to traverse both of
the middle vertices can traverse in each diamond by the path joining them in either a left-to-right
or right-to-left manner. Left-to-right will correspond to the assignment T for variable xi whereas
right-to-left traversal will correspond to the assignment F .

This gives the “Boolean” part of the reduction. It remains to decribe the clause gadgets. To do
so we will add a single vertex for each clause of φ make sure that the bi-directional path in the
diamond for each xi has precisely 3k+ 1 internal vertices if there are k occurrences of either xi or
xi in φ and allocate 2 consecutive vertices of the path to each occurrence with separator vertices
between the pairs and at the ends.

If xi occurs in clause Cj there is a directed edge from the left node of the pair associated with that
occurrence to the node for Cj and a directed edge from Cj to the right node associated with that
occurrence. If xi occurs in clause Cj then the directions are reversed, i.e., there is a directed edge
from the right node of the pair associated with that occurrence to the node for Cj and a directed
edge fromCj to the left node associated with that occurrence. (Thus for eachCj , the corresponding
node has in-degree and out-degree 3.)

This completes the reduction f . It is clear that the output directed graph G is of linear size in
the size of the input formula φ and f can be computed in polynomial time. It remains to argue
correctness.

If φ has a satisfying assignment α then we use a traversal from the top node to the bottom node
that is left-to-right on diamond xi iff xi is assigned value T by α and right-to-left iff xi is assigned
value F , but taking a one-node diversion to cover the node for Cj on the occurrence of the first
literal in Cj that is assigned true. Observe that the diversion can take place precisely because the
assignment matches the polarity of the literal in the clause. Therefore the graph has a Hamiltonian
path/cycle.

Now suppose that the graph has a Hamiltonian path (or cycle). If the path (or cycle) involves left-
to-right or right-to-left traversals with one-node diversions to cover clause nodes, we can see that
one can immediately read off an assignment and that assignment must satisfy φ by the direction of
the diversions. However, we must rule out the possibility that when a clause node Cj is reached
that the path continues along some out-edge that is not paired to that in-edge.

Suppose that it did so, let u be the other end of the in-edge and v be the neighbor of u on the
diamond path containing u that has not yet been visited at the point that the edge (u,Cj) is taken.

4

By construction, v is either paired with u or is a separator vertex. In the either case, v can only be
from the next vertex along the bi-directional path (given that it is not reached from u or from Cj)
and so it must be an endpoint of the traversal. In the case of DHAMCY CLE, this is impossible
because there is no endpoint. In the case of DHAMPATH , this is impossible because the bottom
vertex must be the endpoint of the traversal. Either way we reach a contradiction. Hence the
traversal corresponds to a satisfying truth assignment and the reduction is correct.

Let 01PROG = {[A, b] | A is an m × n integer matrix for some m,n and b is an integer vector
such that Ax ≥ b has a solution x ∈ {0, 1}n}. It is easy to see 01PROG ∈ NP since the compu-
tation of Ax given x and comparison to b can be checked in polynomial time since algorithms for
integer arithmetic are efficient. NP-completeness follows easily using a reduction from 3SAT (or
CNFSAT) that converts each clause such as x1 ∨¬x2 ∨ x3 to an equivalent 01 integer inequality,
x1 + (1− x2) + x3 ≥ 1 (and rewriting in standard form as x1 − x2 + x3 ≥ 2).

Now consider IP = {[A, b] | A is an m × n integer matrix for some m,n and b is an integer
vector such that Ax ≥ b has an integer solution x}. It is clear that by adding inequalities xi ≥ 0
and −xi ≥ −1, we can show that 01PROG ≤p IP and hence IP is NP-hard. It is in fact also
NP-complete, though in this case it is not obvious and proof of membership in NP is the hard part
of the argument.

The problem LP is the same as the IP problem except that solutions can be arbitrary real numbers.
This has been known to be in P since the late 1970’s due to the work of Khachian. On the other hand
the problem, QUAD-PROG which is the language consisting of the set of systems of quadratic
equations with integer coefficients that have solutions over the real numbers is NP-hard. In this
case it is not too hard to show that 01PROG ≤p QUAD-PROG.

The above examples give some idea of the range of NP-complete problems. Since the original
papers, tens of thousands of natural problems have been shown to be NP-complete and an efficient
solution to any one of them would solve all of them.

NP search The definition of NP only concerns decision problems of whether or not a witness
exists. We are often also interested in the search problem of finding some witness if one exists.
(Though this answer may not be unique we can make it into a function by fixing on, say, the
lexicographically smallest witness if one exists.) The two problems are closely connected as shown
by the following result.

Theorem 1.8. If P = NP then for every L ∈ NP and verifier V for L there is a polynomial-time
(witness-finding) algorithm W such that

x ∈ L⇔ V (x, y) = 1.

Proof. This is a classic example of a “search-to-decision” reduction. We first show the result for
SAT . If P = NP then there is a polynomial-time algorithm M for SAT . The algorithm W will

5

take formula φwith input variables y1, . . . , yn and operate as follows: First check if φ is satisfiable;
if not, fail. Otherwise, determine a satisfying assignment α for y one bit at a time as follows: First
run M on formula φ ∧ y1; if it outputs 1 then run it on φ ∧ y1 ∧ y2, etc. If M outputs 0 on input
φ∧ y1 then run M on formula φ∧ y1 ∧ y2 and continue. At each stage M will be run on a formula
equivalent to φ ∧ (y1 = α1) ∧ (yi−1 = αi−1) ∧ yi. The last of these calls will determine the value
of αn.

It remains to argue this for arbitrary NP languages L and verifiers V . To do this we observe that
the proof of NP-completeness of CIRCUIT -SAT and its reduction to 3SAT (and hence SAT)
are such that the witnesses for satisfiability allow one to simply read off the witness y such that
V (x, y) = 1.

coNP Membership in NP is one-sided notion. There are witnesses for membership in L but not
for non-membership. It is therefore natural to consider the set

coNP = {L | L ∈ NP}.

This definition is equivalent to the following alternative definition which has a nicer dual formula-
tion involving ∀ rather than ∃:

Definition 1.9. coNP is the set of languages L such that there is a polynomial p : N → N and a
polynomial time U such that

x ∈ L⇔ ∀y ∈ {0, 1}p(|x|) U(x, y) = 1.

Observe that for a language L ∈ NP, with NP verifier V , the corresponding U for the L outputs
1− V (x, y) on input (x, y).

Some natural languages in coNP are
UNSAT = {[φ] | φ is an unsatisfiable Boolean formula} and
TAUT = {[φ] | φ is a propositional logic tautology}.
In both cases, one must check all possible assignments to determine that the the formula is in the
language (though a single assignment is enough to show that it is not).

UNSAT is not quite SAT since it excludes inputs that are not Boolean formulas; however it is
easy to see that SAT ≤p UNSAT since it is easy to map inputs that are not Boolean formulas
to an obviously unsatisfiable formula like x ∧ ¬x. Moreover, UNSAT ≤p TAUT since φ is
unsatisfiable iff ¬φ is a tautology.

Observe also that our notion of reduction is preserved under complement: A ≤p B ⇔ A ≤p B.
Hence, by the Cook-Levin theorem, every language A ∈ coNP is polynomial-time reducible to
UNSAT and TAUT ; i.e. using the obvious analogous definition to that for NP we have that
UNSAT and TAUT are coNP-complete.

6

It is an open question whether or not NP = coNP. Since P is closed under complement, P = NP
implies that NP = coNP but we could have the latter without the former. Either way, the conclusion
would be somewhat surprising.

Theorem 1.10. NP = coNP if and only if every propostional logic tautology has a short (polynomial-
size) proof that is easy to check.

Proof. This follows immediately from the fact that TAUT is a complete problem for coNP and
the fact that NP is the set of languages that have polynomial-size proofs of membership that are
efficiently checkable.

Clearly P is contained in both NP and coNP and both are contained in EXP ⊆ NEXP. Next time
we will prove that P 6= EXP. For now we observe that the power of nondeterminism at higher
complexity levels is related to that at lower levels.

Theorem 1.11. If EXP 6= NEXP then P 6= NP.

Proof. We prove the contrapositive. Suppose that P = NP and let L ∈ NEXP. Then L ∈
NTIME(2n

k
) for some k. Let N be the nondeterministic TM running in time O(2nk

) that de-
termines membership in L. Define a new language

Lpad = {(x, 12
|x|k

) | x ∈ L}.

Consider the following nondeterministic TM N ′ for Lpad: On input z = (x, 12
|x|k

) remove the

string 12
|x|k and run M on input x and use its answer. Since the running time of N on input x is

O(2|x|
k
) the total running time is only linear in the input size |z| for Lpad and hence N ′ runs in

polynomial time. This proves that Lpad ∈ NP. Now since P = NP by assumption, there must be
some polynomial time (deterministic) TM M ′ deciding Lpad.

Now define a TM M for L as follows: On input x, produce the string z = (x, 12
|x|k

) and run M ′

on input z. The running time of M ′ is polynomial in its inputs size and hence TM M runs in time
2O(nk) which is O(2nk+1

). Therefore L ∈ EXP. We have therefore shown that our assumption
implies that NEXP = EXP which is what we needed to prove.

7

	More NP-completeness

