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1 Nondeterminism and NP

Recall the definition from last class:

Definition 1.1. NP is the set of languages L ⊆ {0, 1}∗ such that there exists a polynomial p : N→
N and a polynomial-time TM V (called a verifier) such that for all x ∈ {0, 1}∗,

x ∈ L⇔ ∃y ∈ {0, 1}p(|x|)V (x, y) = 1.

Such a y is called a certificate/witness/proof that x ∈ L.

We continue with our list of NP problems.

Some more NP problems

• INDEPENDENT -SET = {[G, k] : G is an undirected graph with an independent set
of vertices I ⊆ V (G) of size ≥ k} where a subset I is independent iff it contains no edges
of G.

– Guess a set I of size k. Verify that it contains no edges of G.

• CLIQUE = {[G, k] : G is an undirected graph with an independent set of vertices C ⊆
V (G) of size ≥ k} where a subset C is a clique iff every edge on the vertices of C are in G.

– Guess a set C of size k. Verify that all edges in C are present in G.

• COMPOSITE = {[n] : n is a composite integer}.

– Guess a set integers a and b. Verify that 1 < a, b < n and ab = n.

• USTCONN = {[G, s, t] : G is an undirected path from s to t}.

– Guess the path. Verify that it connects s and t.
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• GRAPH-ISOMORPHISM = {[G,H] : G and H are undirected graphs such that
|V (G)| = |V (H)| and there is a 1-1, onto map φ : V (G)→ V (H) satisfying (φ(u), φ(v)) ∈
E(H) iff (u, v) ∈ E(G) for all (u, v) ∈ V (G).

– Guess the function φ. Verify that it is an isomorphism.

We note that USTCONN has long been known to also be in P, COMPOSITE was only shown
to be in P in 2005 (by Reingold), and just a month ago GRAPH-ISOMORPHISM , which
previously had no algorithm for efficient than factoring in the worst case, was shown by Babai to
be computable in DTIME(nlog

c n) for some constant c.

Analogous to polynomial time P =
⋃

k DTIME(nk) one can define exponential time

EXP =
⋃
k

DTIME(2n
k

).

Lemma 1.2. P ⊆ NP ⊆ EXP.

Proof. We already saw that P ⊆ NP. To show that NP ⊆ EXP we use brute force: Let L ∈ NP.
Then there is some running time p and polynomial time verifier TM V such that x ∈ L iff there is a
y ∈ {0, 1}p(|x|) such that V (x, y) = 1. The algorithm is as follows: For each y ∈ {0, 1}p(|x|), run V
on input (x, y) and immediately accept if V accepts any input; otherwise, reject. The running time
is 2p(|x|)q(|x|, p(|x|)) where q is the running time bound for V . Now p(|x|) is O(|x|k) for some
integer k and since q is also a polynomial, the total running time is O(2nk+1

) and hence L ∈ EXP
as required.

Nondeterministic Turing machines The original definition of NP was in terms of nondetermin-
istic Turing machines. Nondeterministic Turing machines (NTMs) are formally defined the same
as determinstic ones except that the transition function δ gives a set of possible transitions for each
step, rather than just a single one. That is

δ : Q× Γk+1 → P(Q× Γk+1 × {L, S,R}k+1).

For the computation of decision problems, we use a special qaccept state in lieu of an output tape in
lieu of writing a 0 or 1 on the output tape.

Recall that a configuration of a TM or NTM consists of its state, tape contents, and the positions of
its read/write heads. A (deterministic) TM computation can be thought of as a path in which each
node is a configuration and each computation step is a directed edge. (If the computation loops
then this path will close on itself but for computation bounded by time T (|x|) it will remain a path
of length T (|x|).)

For an NTM M , each configuration may have many possible next configurations, so each node
has out-degree at most B = |Q × Γk+1 × {L, S,R}k+1| so we can describe computations as a
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rooted tree of height at most T (|x|) (where we ignore the fact that the same configuration may be
reachable along different branches). Note that some branches may end early (fail) in case the δ
function has output ∅.

Definition 1.3. An NTM M accepts an input x (outputs 1) iff there is a sequence of possible moves
on input x that lead M to qaccept. (That is, there is some leaf of the computation tree of M on input
x that is a configuration in state qaccept.)

An NTM M computes a function f : {0, 1}∗ → {0, 1}∗ iff
(1) the output on all non-failing computation is f(x), and
(2) there is at least one path that outputs f(x).
This can be seen as a generalization of the case of decision problems.

The time taken by an NTM M on input x is the maximum number of steps of any possible com-
putation of M on input x. We then define nondeterministic time complexity classes analogously to
the deterministic ones.

Definition 1.4. We define the complexity class of Boolean functions,

NTIME(T(n)) = {f : {0, 1}∗ → {0, 1} | there is a NTM M that computes f in time O(T (n))}.

We also interpret NTIME(T(n)) as a set of languages L ⊆ {0, 1}∗ where L = {x |M accepts x}.

Theorem 1.5. NP =
⋃

k NTIME(nk)

Proof. Let L ∈ NP. Then there is a polynomial p and a a polynomial-time verifier V such that
x ∈ L iff there is some y ∈ {0, 1}p(|x|) and V (x, y) = 1. On input x, the NTM M will write down
a sequence of bits y of length p(|x|), where the nondeterminism allows each bit to be either 0 or 1.
ThenM runs V on input (x, y). The running time ofM on input x is at most p(|x|)+q(|x|+p(|x|))
where q is the running time of V . Since p and q are polynomials, there is some k such that this time
is O(|x|k). (We say that M nondeterministically “guesses” y and then deterministically verifies y.)
Therefore L ∈ NTIME(nk).

Let L ∈ NTIME(nk). Then there is an NTM M and a time bound T that is O(nk) such that M
accepts x iff x ∈ L. We define the polynomial pL and verifier VL as follows. Let b = log2B.
Define p(n) = bT (n). The certificate y ∈ {0, 1}p(|x|) is interpreted as a sequence of moves of M
of length T (|x|).

V on input x and y simulated M on input x using each segment of y of length b to choose which of
the possible next moves to execute. If the move is not one of the possible moves then computation
stops and outputs 0. If the move yields state qaccept of M then V outputs 1. The simulation takes
time O(T (n)) which is O(nk). Clearly x ∈ L iff V (x, y) = 1. Hence L ∈ NP.

The second direction of the above proof shows that there is a normal form for nondeterministic
computations in which a stage of guessing is following by deterministic verification.
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We can also define nondeterministic complexity classes for other time bounds, e.g., NEXP =⋃
NTIME(2n

k
).

2 Polynomial-time reductions and NP-completeness

Definition 2.1. A ⊆ {0, 1}∗ is polynomial-time mapping reducible to B ⊆ {0, 1}∗, A ≤p B, iff
there is a polynomial-time computable f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ A⇔ f(x) ∈ B.

Lemma 2.2.
(1) If A ≤p B and B ≤p C then A ≤p C,
(2) if B ∈ P and A ≤p B then A ∈ P, and
(3) if B ∈ NP and A ≤p B then A ∈ NP.

Proof.
(1) Let f be the reduction from A to B computable in time O(nk) and g be the reduction from
B to C computable in time O(n`). The reduction h from A to C is h = g ◦ f . By definition
x ∈ A ⇔ f(x) ∈ B and f(x) ∈ B ⇔ g(f(x)) ∈ C so x ∈ A ⇔ h(x) ∈ C. It remains to
determine the computation time for h. The computation time for f(x) isO(|x|k). This also implies
that |f(x)| if O(|x|k) and so the computation time of g on input f(x) is O((|x|k)`) = O(nk`) it
follows that the total time to compute h(x) is O(nk + nk`) = O(nk`) and hence h is a polynomial-
time reduction from A to C as required.
(2) The algorithm on input x is to compute f(x) and run the polynomial-time algorithm for B on
input f(x) and take its answer. Correctness is immediate since f is reduction. The time analysis is
similar to that for (1).
(3) The verifier VA for A will take x and a string y of length pB(|f(x)|) and run the verifier VB for
B on input (f(x), y). Again, the time analysis is similar. (Alternatively, one could use polynomial-
time NTMs.)

Definition 2.3.
(1) B is NP-hard iff ∀A ∈ NP, A ≤p B.
(2) B is NP-complete iff (a) B ∈ NP and (b) B is NP-hard.

Lemma 2.4.
(a) If B is NP-hard and B ∈ P then P = NP.
(b) P = NP iff some NP-complete problem is in P.

Proof.
(a) LetA ∈ NP. SinceB is NP-hard thenA ≤p B and sinceB ∈ P by Lemma 2.2 we haveA ∈ P.
It follows that NP ⊂ P. Since we already know that P ⊆ NP, we have P = NP.
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(b) Any NP-complete problem is in NP so if P = NP then every NP-complete problem is in P.
For the reverse direction, observe that every NP-complete problem is NP-hard and so the reverse
direction follows from part (a).

In his original paper on the completeness of the SAT problem for NP, Cook used a more general
notion of reduction, related to one used by Turing, in which one can make a polynomial number of
subroutine calls to solutions to B in order to determine the answer to A, and one can even modify
the answers; these reductions are known as “Cook reductions”. In his follow-on paper, Karp refine
the notion of reduction to the one we use here; these are also known as “Karp reductions”. Though
the results of Lemma 2.4 hold for Cook reductions, one difference between the definitions is that
Lemma 2.2 part (3) does not hold for Cook reductions; i.e. NP is not closed under Cook reductions.

Theorem 2.5 (Cook-Levin Theorem). CIRCUIT -SAT is NP-complete.

Proof. We have already shown that CIRCUIT -SAT is in NP. It remains to show that it is NP-
hard.
Let A ∈ NP. By definition there are p and VA such that

x ∈ A⇔ VA(x, y) = 1 for some y ∈ {0, 1}p(|x|).

Since p is a polynomial and VA runs in polynomial time the the total running time of VA on input
(x, y) is O(|x|k) for some integer k. Let Mx be the TM VA with x hardwired, i.e. Mx(y) =
VA(x, y).

Then by the circuit simulation of Turing machine computations from last class there is a circuit CA
x

of size O(|x|k log |x|) that takes y as input, such that CA
x (y) = Mx(y) = VA(x, y) = 1. Therefore

CA
x ∈ CIRCUIT -SAT ⇔ ∃yCA

x (y) = 1 by definition
⇔ ∃y V (x, y) = 1

⇔ x ∈ A

This gives correctness. As we discussed in the proof of the circuit simulation, the circuit is not
only polynomial size, it is very regular and easy to compute given x with the transition table of
VA built in. Therefore the map from x to [CA

x ] is polynomial-time computable and hence A ≤p

CIRCUIT -SAT .

Observe that by transitivity of ≤p we immediately have

Lemma 2.6. If B is NP-hard and A ≤ B then C is NP-hard.

Corollary 2.7 (Cook-Levin). 3SAT is NP-complete.
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Proof. We already know that 3SAT ∈ NP. To complete the proof we show thatCIRCUIT -SAT ≤p

3SAT :
The mapping from [C] for some circuit C to [φ] for a 3CNF formula φ is given by the following.
We add a new variable for each gate g of C. We first add extra clauses depending on the gate type.

If the gate is f = g∨h we add clauses for the formula f ↔ (g∨h), which are ¬f ∨ g∨h, ¬g∨ f ,
and ¬h ∨ f .

If the gate is f = g ∧ h we add clauses for the formula f ↔ (g ∧ h), which are ¬f ∨ g , ¬f ∨ h,
and ¬g ∨ ¬h ∨ f .

If the gate is f = ¬g we add clauses for the formula f ↔ ¬g, which are ¬f ∨ ¬g , f ∨ g.

The we add a clause of size 1 consisting of the clause for the output gate.

Finally for every clause of size < 3 we add one or two extra dummy variables w and z and replace
by size 3 clauses as follows: (a ∨ b) becomes the two clauses (a ∨ b ∨ z)(a ∨ b ∨ ¬z) and
clause a becomes (a ∨ w ∨ z)(a ∨ w ∨ ¬z)(a ∨ ¬w ∨ z)(a ∨ ¬w ∨ ¬z).

The reduction is clearly polynomial time, the formula φ is satisfied if and only if the output is
correctly computed and it has value 1.

Cook’s original paper showed NP-completeness directly for CNFSAT and then 3SAT . That of
Levin used a tiling problem as the first key problem. In both cases, the reduction used was the
simpler quadratic size reduction with a tableau having one entry for each tape cell for each time
step.

Even in the beginning satisfiability problems were not the only kinds of problems shown to be
NP-complete. For example we have the following:

Theorem 2.8. INDEPENDENT -SET is NP-complete.

Proof. Again we know that it is in NP. To show NP-hardness we prove

3SAT ≤p INDEPENDENT -SET :

Suppose that the 3CNF formula φ has n variables and m clauses C1, . . . , Cm. The reduction maps
φ to a [G, k] where G is an undirected graph on 7m vertices and k = m. There will be 7 vertices
associated with each clause Ci of m, one for each of the 7 partial assignments to the 3 variables in
Ci that make Ci true. There will be an edge between vertices if and only if their partial assignments
disagree. (Note that this means that every pair of vertices associated with a single Ci is joined by
an edge.) Clearly this is polynomial time. The graph has size O(m2) edges.

Given a satisfying assignment α for φ, for each Ci we select the unique assignemtn associated with
Ci that is consistent with α. Hence [φ] ∈ 3SAT implies [G,m] ∈ INDEPENDENT -SET .
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On the other hand an independent set in G of size m must contain precisely 1 of the 7 vertices
associated with each Ci. Since they form an independent set, by definition, they agree on their
common variables. The satisfying assignment for φ is the (unique) assignment that is consistent
with all of the vertices in the independent set.
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