
CSE 531: Computational Complexity I Winter 2016

Lecture 2: Circuit complexity vs Turing machine complexity
January 8, 2016

Lecturer: Paul Beame Scribe: Paul Beame

1 Circuits

A Boolean circuit C is a directed acyclic graph with n + 2 source nodes labelled by n input bits
x1, . . . , xn and two constants 0 and 1 for some n ∈ N. Non-source nodes are called gates and
will have fan-in (indegree) 1 or 2 (though we will sometimes relax this bound). Fan-in 2 gates are
labelled ∧ or ∨ and fan-in 1 gates are labelled ¬. (This is called the De Morgan basis.) There is a
single sink node (the output node).

Each node computes a function of x in the following obvious way. The value of each input is
the corresponding bit value. For a gate f labeled ∧ with predecessor gates g and h, value f(x) is
g(x)ANDh(x). Similarly, for gates labeled ∨ using OR and gates labelled ¬ is NOT. The function
computed by C, C(x) is the function computed by the output gate.

The size of C is the # of non-source vertices of C. The depth of C is the length of the longest path
in C from an input to the output.

Definition 1.1. Define Bn = {f : {0, 1}n → {0, 1}}.

We can consider more general circuits than De Morgan circuits that have binary gates computing
arbitrary functions in B2, which is called the complete basis. It is easy to see that each element α
of B2 can be computed by a circuit of constant size and depth and by substituting this circuit for
each node labelled by α. This changes size and depth by at most a constant factor.

Example 1.2.

Definition 1.3. A circuit C is satisfiable iff there is some input y such that C(y) = 1.

Definition 1.4. A family of circuits C = {Cn}n∈N computes a function f : {0, 1}∗ → {0, 1} iff
C|x|(x) = f(x) for all x ∈ {0, 1}∗. The size of C is S(n) iff |Cn| ≤ S(n) for all n ∈ N.
The depth of C is d(n) iff the depth of Cn is ≤ d(n) for all n ∈ N.

Note that the definition does not require any relationship between the Cn for different values of
n and so a circuit family may not in general have a finite description. This is the essence of
non-uniformity.

1

In particular, circuit families of small size may compute undecidable functions such as the function
f that outputs 1 on input x if and only if x = 1n for some n such that the n-th Turing machine Mn

halts on input n. For each n the circuit Cn for this function will either always output 0 or it will be
a tree of ∧ gates checking that the input is 1n. This family has circuit size n. (One can even define
a family of size 1 that also computes an undecidable function by changing f to g which outputs 1
on all inputs x with |x| = n where the n-th TM Mn halts on input n. For each n , the n-th circuit
computes either the constant function 0 or the constant function 1.)

Define SIZE(S(n)) = {f : {0, 1}∗ → {0, 1} | fis computed by a circuit family C of size S(n)}.
DEPTH(d(n)) = {f : {0, 1}∗ → {0, 1} | fis computed by a circuit family C of depth d(n)}.

Define P/poly =
⋃

k SIZE(nk). (The notation POLYSIZE is sometimes used for this class; we will
motivate the P/poly notation later.)

Special classes of circuits A circuit φ is a formula iff each gate has fan-out (outdegree) at most 1;
i.e., the circuits is a directed tree. For every circuit there is an equivalent formula of the same depth
but potentially much larger size since one needs to replicate subcircuits of the circuit whenever the
outdegree is larger than 1. Note that changing the basis may change formula size by much more
than a constant factor. (In particular using a basis that includes ⊕ (parity) lets one compute the
parity of n bits in size O(n), whereas in the De Morgan basis it requires size Θ(n2).)

A formula is a DNF (Disjunctive Normal Form) formula iff all ¬ gates are next to input nodes,
and after that, each path from an input or ¬ gate to the output consists of ∧ gates followed by ∨
gates. We can reexpress this equivalently in terms of two levels of unbounded fan-in gates with an
unbounded ∨ gate at the output that receives fan-in from unbounded ∧ gates that each receive as
input variables or their negations (which are both called literals. The unbounded fan-in ∧ gates are
called terms.

CNF (Conjunctive Normal Form) formulas are defined dually, with an unbounded fan-in ∧ gate at
the output, receiving inputs from unbounded fan-in ∨ gates. The ∨ gates are called clauses.

A CNF formula is a k-CNF iff all of its clauses have fan-in k. Similarly a k-DNF is a DNF formula
with all terms having fan-in k.

By including one term of size n for each input assignment in on which f outputs 1 (or, dually, one
clause of size n for each assignment on which f output 0) we immediately obtain the following
proposition.

Proposition 1.5. Every function f ∈ Bn has DNF formulas and CNF formulas of size O(n2n).

You will show on homework that you can do somewhat better than this using circuits, namely
O(2n/n).

2

Relationships between circuits and Turing machines

Theorem 1.6 (Pippenger-Fischer). For every time-constructible T (n),

DTIME(T(n)) ⊆
⋃
c

SIZE(cT(n) log2 T(n)).

This immediately implies the following relationship.

Corollary 1.7. P ⊂ P/poly.

Proof. The proof of Theorem 1.6 follows very closely along the key ideas of Cook’s proof of the
Cook-Levin Theorem as modified by Ladner. The configuration (also called a snapshot in the text)
of a Turing machine consists of

• the contents of the nonblank region of all its tapes

• the position of all its read heads

• its current state

We first describe the basic idea assuming that the time T (n) machineM is a 1-tape Turing machine.
In this case we can use an option mark on each cell to indicate the current state if the head is
scanning that cell.

Since there are at most T (n) non-blank cells on each tape, there is a sequence of configurations
C0, C1, . . . , CT (n) each of length O(T (n)) that can be written out in a T (n) × T (n) tableau, with
each Ct as a row and each column representating the state of a fixed cell on the tape at each of the
time steps. The simulation will allocate a constant number of gates with each cell in the tableau.
Each cell then contains an element from Γ× (Q ∪�).

The circuit for the initial configuration C0 is immediately constructible using the basic definitions.
In order to determine the contents of cell i at time t, it suffices to know the contents of cells i− 1,
i, and i + 1 at time t − 1 and the transition function of the Turing machine being simulated. This
can be computed using a simple circuit of constant size. Each entry in the tableau will have an
essentially identical bit of circuitry that connects these 4 cells together. (The left boundary will be
slightly different because only 2 cells from the previous layer are relevant.)

This circuit now correctly computes the contents of the tape cells and it suffices to check to see
whether the state at level T (n) is qaccept. This is essentially a full binary fan-in tree of ∧ gates. The
total size is O(T 2(n)). Note that since one can convert a TM to a single-tape TM by only squaring
the size, this already suffices to prove that P ⊂ P/poly.

It will be to important (for use in the proof of the Cook-Levin theorem) to note that given [M] and
a bound T (n), it is very easy to construct this simulating tableau circuit of size O(T 2(n)).

3

In order to obtain the better O(T (n) log T (n)) size circuit, we will use the efficient oblivious
universal Turing machine U instead of M . The key advantage to being oblivious is that we only
need to build in the circuitry for contents that might change during each time step. Since U is
oblivious, there is only one tableau entry per row in which the head can lie. This allows us to
eliminate most of the cells in the tableau. and only retain the cells immediately before or after that
are of interest. This only a constant number of cells per time step are represented which is size
O(T (n) log T (n)).

The one difficulty this creates is that how the contents to be written into the current cell are de-
termined depends, potentially, on cells that were last written at vastly different prior times. Here
is where we use the fact discussed in the construction of U that the head positions are not only
oblivious, but also very simply predictible, which given the t and i allows the algorithm to pick out
exactly which prior time-step was the last to modify a cell since only those entries of the tableau
will be simulated by the circuitry.

2 Nondeterminism and NP

Definition 2.1. NP is the set of languages L ⊆ {0, 1}∗ such that there exists a polynomial p : N→
N and a polynomial-time TM V (called a verifier) such that for all x ∈ {0, 1}∗,

x ∈ L⇔ ∃y ∈ {0, 1}p(|x|)V (x, y) = 1.

Such a y is called a certificate/witness/proof that x ∈ L.

Since we can choose p(n) = 0 for all n ∈ N, we immediately have

Proposition 2.2. P ⊆ NP.

Some NP problems

• CIRCUIT -SAT = {[C] | C is a satisfiable Boolean circuit}

• SAT = {[φ] | φ is a satisfiable Boolean formula}

• k-SAT = {[φ] | φ is a satisfiable k-CNF formula}.

In each of these cases the certificate y is the assignment that makes the circuit/formula evaluate to
1. The verifier V propagates the assignment through the circuit and outputs the value produced by
the circuit. This is clearly polynomial-time computable. The problem that this verifier solves is an
important problem in its own right.
CIRCUIT − V ALUE = {([C], y) | C(y) = 1} and the argument shows that CIRCUIT -
V ALUE ∈ P.

4

	Circuits
	Nondeterminism and NP

