Problems:

1. Show that TQBF restricted to formulas where the part following the quantifiers is in conjunctive normal form is still \(\text{PSPACE} \)-complete.

2. Let \(\text{STRONGCONN} \) denote the problem of deciding whether a directed graph has a path from \(u \) to \(v \) and \(v \) to \(u \) for every pair of vertices \(u, v \). Show that \(\text{STRONGCONN} \) is \(\text{NL} \)-complete.

3. Let \(s_0, s_1, s_2, \ldots \) be an enumeration of the binary strings in lexicographic order, \(0, 1, 00, 01, 10, 11, 000, 001, \ldots \). Define \(L \subset \{0, 1, \#\}^* \) by

\[
L = \{s_0\#s_1\#\cdots\#s_k \mid k \geq 0\}.
\]

Show that \(L \in \text{DSPACE}(\log \log n) \).

4. Show that if a Turing Machine uses \(o(\log \log n) \) space, then it must use \(O(1) \) space.

HINTS: Consider the shortest input \(x_1 \cdots x_n \) that requires space \(S > 0 \) (where \(S \) is chosen to be large enough). Let \(C_i \) denote the set of all partial configurations that are possible when the input head is over location \(i \), where a partial configuration consists of everything in the configuration except for the location of the input head. Then prove

Lemma For \(i < j \leq n \), \(C_i \neq C_j \).

To do this, assume that it is not the case, and consider the run of the machine on input \(x_1 \cdots x_i x_{j+1} \cdots x_n \), and show that this run also uses space \(S \), which contradicts the choice of \(x_1 \cdots x_n \).

Finally, count the number of possible sets \(C_i \), and use the pigeonhole principle to argue that if \(S \) is much smaller than \(\log \log n \), then some \(i < j \) must give the same sets \(C_i = C_j \) and the same value \(x_i = x_j \), which is a contradiction.

5. (Extra credit) A language \(L \) is called unary iff \(L \subseteq 1^* \); in particular it includes at most one string of each length. Prove that if any unary language is \(\text{NP} \)-complete then \(\text{P} = \text{NP} \).

HINT: Use the fact that there are only a polynomial number of different values required to specify the portion of the unary language that any mapping reduction from \(\text{SAT} \) can map to. Derive a polynomial-time \(\text{SAT} \) algorithm using the mapping reduction on the formulas appearing in the search-to-decision reduction for \(\text{SAT} \).