1. Prove that \(P \neq \text{SPACE}(n) \).

2. Prove the following version of the Schwarz-Zippel lemma. Let \(F \) be any field (finite or infinite) and let \(Q(x_1, x_2, \ldots, x_m) \in F[x_1, x_2, \ldots, x_m] \) be a non-zero \(m \)-variate polynomial over \(F \) of total degree \(d \). Fix any finite set \(S \subseteq F \). Prove that

\[
\text{Prob}[Q(r_1, r_2, \ldots, r_m) = 0] \leq \frac{d}{|S|}
\]

where the probability is taken over \(r_1, r_2, \ldots, r_m \) that are chosen independently and uniformly at random from \(S \).

3. Prove that if \(\text{NEXPTIME} \neq \text{EXPTIME} \), then \(P \neq \text{NP} \). (Problem 9.19, Sipser’s book)

4. Prove that if \(\text{NP} \subseteq \text{BPP} \), then \(\text{NP} = \text{RP} \).

5. (30 points) In this exercise, by circuits we imply Boolean circuits with NOT, AND, and OR gates of fan-in 2, and we measure the size of a circuit by the number of gates in it.

 (a) Prove that there exists a Boolean function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) which cannot be computed by any circuit of size less than \(\frac{2^n}{8n} \). (Hint: Use a circuit counting argument.)

 (b) Let \(s: \mathbb{N} \rightarrow \mathbb{N} \) be a function such that \(n \leq s(n) < \frac{2^n}{8n} \) for \(n \geq 10 \). Prove that for all large enough \(n \), there exists a function \(g: \{0, 1\}^n \rightarrow \{0, 1\} \) that can be computed by a circuit of size \(2 \cdot s(n) + O(1) \) but not by a circuit of size \(s(n) \).

 (c) Prove that for every \(k \geq 1 \), \(\text{EXPTIME} \not\subseteq \text{SIZE}(n^k) \), in other words there is a language that can decided in exponential time but cannot be decided by a circuit family of size \(O(n^k) \). (Hint: Use Part (b) above.)

 (d) Prove that \(\text{EXPSPACE} \not\subseteq \bigcup_{k \geq 1} \text{SIZE}(n^k) \). In other words, show that some language in \(\text{EXPSPACE} \) does not have a polynomial sized circuit family deciding it.

 (e) (Extra Credit) Strengthen the result of Part (b) above by proving that there is a function \(g: \{0, 1\}^n \rightarrow \{0, 1\} \) that can be computed by a circuit of size \(s(n) + n + O(1) \) but not by a circuit of size \(s(n) \).