Instructions: Same as Problem Set 1.

- 1. Prove that $\mathsf{P} \neq \mathsf{SPACE}(n)$.
- 2. Prove the following version of the Schwarz-Zippel lemma. Let \mathbb{F} be any field (finite or infinite) and let $Q(x_1, x_2, \ldots, x_m) \in \mathbb{F}[x_1, x_2, \ldots, x_m]$ be a non-zero *m*-variate polynomial over \mathbb{F} of *total* degree *d*. Fix any finite set $S \subseteq \mathbb{F}$. Prove that

$$\mathbf{Prob}[Q(r_1, r_2, \dots, r_m) = 0] \le \frac{d}{|S|}$$

where the probability is taken over r_1, r_2, \ldots, r_m that are chosen independently and uniformly at random from S.

- 3. Prove that if NEXPTIME \neq EXPTIME, then P \neq NP. (Problem 9.19, Sipser's book)
- 4. Prove that if $NP \subseteq BPP$, then NP = RP.
- 5. (30 points) In this exercise, by circuits we imply Boolean circuits with NOT, AND, and OR gates of fan-in 2, and we measure the size of a circuit by the number of gates in it.
 - (a) Prove that there exists a Boolean function $f : \{0, 1\}^n \to \{0, 1\}$ which cannot be computed by any circuit of size less than $\frac{2^n}{9n}$. (<u>Hint</u>: Use a circuit counting argument.)
 - (b) Let $s : \mathbb{N} \to \mathbb{N}$ be a function such that $n \leq s(n) < \frac{2^n}{9n}$ for $n \geq 10$. Prove that for all large enough n, there exists a function $g : \{0, 1\}^n \to \{0, 1\}$ that can be computed by a circuit of size $2 \cdot s(n) + O(1)$ but not by a circuit of size s(n).
 - (c) Prove that for every $k \ge 1$, EXPTIME $\not\subseteq$ SIZE (n^k) , in other words there is a language that can decided in exponential time but cannot be decided by a circuit family of size $O(n^k)$. (Hint: Use Part (b) above.)
 - (d) Prove that $\mathsf{EXPSPACE} \not\subseteq \bigcup_{k \ge 1} \mathsf{SIZE}(n^k)$. In other words, show that some language in $\mathsf{EXPSPACE}$ does not have a polynomial sized circuit family deciding it.
 - (e) (Extra Credit) Strengthen the result of Part (b) above by proving that there is a function $g: \{0,1\}^n \to \{0,1\}$ that can be computed by a circuit of size s(n) + n + O(1) but not by a circuit of size s(n).