
CSE 531: Computability and Complexity Autumn 2003
Problem Set #1 Instructor: Venkatesan Guruswami
Due on October 20, 2003 in class.

Reminder: If you haven’t done so already, subscribe to CSE 531 email group ASAP by visiting
http://majordomo.cs.washington.edu/mailman/listinfo/cse531.

Instructions: You are allowed to collaborate with fellow students taking the class in solving
problem sets, but you must write up your solutions on your own. If you do collaborate in solving
problems, you must acknowledge for each problem the people you worked with on that problem.

You are expected to refrain from referring to any source other than Sipser’s text and your
class notes in coming up with your solutions. The problems have been carefully chosen for their
pedagogical value and hence might be similar or identical to those given out in past offerings of
this course at UW, or similar courses at other schools. Using any pre-existing solutions from these
sources, or using solution material from the Web is, needless to say, strictly prohibited.

Most of the problems only require one or two key ideas for their solution – spelling out these
ideas should give you most of the credit for the problem even if you err in some finer details. So,
make sure you clearly write down the main idea(s) behind your solution even if you could not figure
out a complete solution.

1. Problem 3.9, Sipser’s book (The power of k-PDA’s for k = 0, 1, 2, 3)

2. Problem 3.16, Sipser’s book (A language is decidable if and only if some enumerator enumer-
ates it in standard order)

• Note that Sipser’s book uses the terminology lexicographic order to mean the familiar
dictionary order except that shorter strings precede longer strings. Thus, the lexico-
graphic ordering of all strings over {0, 1} is {ε, 0, 1, 00, 01, 10, 11, 000, . . .}. We will refer
to this ordering as the standard order throughout the course.

3. Problem 4.17, Sipser’s book. (A language C is Turing-recognizable iff there exists a decidable
language D such that C = {x : ∃y(〈x, y〉 ∈ D)})

4. Problem 4.18, Sipser’s book. (Two disjoint co-Turing-recognizable languages are separated
by some decidable language.)

5. Define the language

A = { 〈M〉 | M is a nondeterministic finite automaton (NFA) that only accepts strings

of the form ww for some w ∈ {0, 1}∗} .

(Note that for 〈M〉 to be in A, it need not accept all strings of the form ww, but any string
it accepts must be of the form ww.) Prove that A is decidable.

6. An unrestricted grammar (or a rewriting system) is a 4-tuple G = (V, Σ, R, S) where

• V is an alphabet;

• Σ ⊂ V is the set of terminal symbols, and V −Σ is called the set of nonterminal symbols;

1



• S ∈ V − Σ is the start symbol; and

• R, the set of rules, is a finite subset of (V ∗(V − Σ)V ∗) × V ∗.

(Thus the “only” difference from context-free grammars is that the left-hand sides of rules
need not consist of single nonterminals.) Let us write α → β if (α, β) ∈ R; and let’s define
u ⇒G v iff, for some w1, w2 ∈ V ∗ and some rule α → β ∈ R, u = w1αw2 and v = w1βw2. Let
∗

⇒G denote the reflexive, transitive closure of ⇒G. We say that a string w ∈ Σ∗ is generated
by G if and only if S

∗

⇒G w. Finally, L(G) ⊆ Σ∗, the language generated by G, is defined to
be the set of all strings in Σ∗ generated by G.

Your exercise is now to prove that a language is generated by an unrestricted grammar if and
only if it is Turing-recognizable.

(Suggestion: Using nondeterminism and/or multiple tapes might aid in constructing Turing
machines to simulate a grammar. For the other direction, to simulate a Turing Machine M

by a grammar, try to construct a grammar whose rules simulate backward moves of M , and
whose derivations will consequently simulate backward computations of M .)

7. ∗ (Optional problem) Show that single-tape TMs that cannot write on the portion of the
tape containing the input can only recognize regular languages. (Problem 3.17, Sipser’s book.)

2


