
CSE 531: Computability and Complexity Autumn 2002
Problem Set #2 Instructor: Venkatesan Guruswami
Due on Thursday, October 31, 2002 in class.

Instructions: You are allowed to collaborate with fellow students taking the class in solving prob-
lem sets. If you do so, please indicate for each problem the people you worked with on that problem.
Note that you must write down solutions on your own and collaboration must be restricted to a
discussion of solution ideas. You are expected to refrain from looking up solutions or solution ideas
from websites or other literature.

1. Which of the following problems about Turing machines are decidable and which are not?
Briefly justify your answers. (20 points)

(a) To determine, given a Turing machine M , whether M has the property that it accepts
a string w ∈ {0, 1}∗ if and only if it accepts the sring w (here w denotes the bitwise
complement of w; eg. 100110 = 011001).

(b) To determine, given a Turing machine M and a string w, whether M ever moves it head
to the left when it is run on input w.

(c) To determine, given a Turing machine M and a string w, whether M on input w ever
tries to move its head left when its head is on the left-most tape cell.

(d) To determine, given a Turing machine M , whether the tape ever contains four consecu-
tive 1’s during the course of M ’s computation when it is run on input 01.

2. (a) Problem 5.19, Sipser’s book (Ambiguity of CFGs is undecidable)

(b) Use the approach used in part (a) above to give a proof different from the one given in
class of the undecidability of COMMONCFG defined as:

COMMONCFG = {〈G1, G2〉 G1, G2 are context-free grammars and L(G1)∩L(G2) = ∅} .

3. Prove that a language L is Turing recognizable if and only if L is mapping reducible to ATM.

4. Problem 5.20, Sipser’s book (Acceptance and emptiness problems for two headed finite au-
tomata)

• Suggestion: Reading Theorems 5.8 and 5.9 on linear bounded automata will help.

5. Define the language

REGULARCFG = {〈G〉 G is a context-free grammar and L(G) is regular }

that consists of grammars which generate regular languages. Prove that REGULARCFG
is undecidable. (Suggestion: Use an approach based on computation histories of Turing
machines similar to the proof that ALLCFG is undecidable.)

6. For a pushdown automaton (PDA) or a nondeterministic Turing machine (NTM), we say
that it has a useless state if there exists a state in its finite control which is never reached, on
any input or any non-deterministic branch. Define the languages USELESSC = {〈M〉 M ∈
C and M has a useless state}, where C = PDA,NTM.
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(a) Prove that USELESSPDA is decidable.

(b) Prove that USELESSNTM is not Turing-recognizable.

7. ∗ (Optional Problem) We have seen in class that the languages

ETM = {〈M〉 M is a Turing machine and L(M) = ∅}

as well as
ALLTM = {〈M〉 M is a Turing machine and L(M) = Σ∗}

are both undecidable. There is, however, a sense in which ALLTM is actually harder than
ETM. Specifically, even if we were miraculously given access to a decider for ETM, it is still
not clear how one could use that to decide ALLTM (contrast this with the fact that it is
easy to decide ATM using a miracle box that can decide ETM). On the other hand, one can
construct a decider for ETM if there were a miracle black box that could decide ALLTM
(think about how).

Of course ETM is provably undecidable, so by assuming that it is decidable, we are assuming
a false statement and can then logically deduce anything. One must therefore be careful in
trying to formalize a statement like “ALLTM is harder than ETM”. This exercise defines
the arithmetical hierarchy which gives us such a formalism and asks you to prove some basic
facts concerning the hierarchy.

Define a relation R ⊆ (Σ∗)k to be decidable if the language

LR = {〈x1, x2, . . . , xk〉 (x1, x2, . . . , xk) ∈ R}

is decidable. Define Σk, for k ≥ 0, to be the class of all languages L for which there is a
decidable (k + 1)-ary relation R such that

L = {x ∃x1∀x2 · · ·Qkxk R(x1, x2, . . . , xk, x)} ,

where the quantifier Qk is ∃ if k is odd and ∀ if k is even. We define Πk = coΣk, i.e. Πk is
the set of all complements of languages in Σk.

In this notation, clearly Σ0 and Π0 equal the set of decidable languages, and in Problem 6 of
Problem set 1, you showed that Σ1 equals the class of Turing-recognizable languages.

Now to your exercises:

(a) Show that, for k ≥ 0, Πk is the class of all languages L such that there is a decidable
relation R for which

L = {x ∀x1∃x2 · · ·Qkxk R(x1, x2, . . . , xk, x)} ,

where the quantifier Qk is ∀ if k is odd and ∃ if k is even.

(b) Show that for all k ≥ 0, Σk ⊆ Σk+1, and Πk ⊆ Σk+1.

(c) Show that Σ2 is the class of languages that can be recognized (not decided) by Turing
machines that are equipped with the following extra power: At any point the machine
may write any string z onto a special tape and enter a special state q?, and the next
state will one of two dedicated states qY or qN depending on whether or not z ∈ ATM
(do not confuse qY and qN with the accept and reject states of the Turing machine, these
states are just used to find out the answer to the question “Does z ∈ ATM?”).
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(d) Prove that for all k ≥ 0, Σk+1 6= Σk. (Hint: Generalize the proof of the case k = 0.)

(e) Prove that ALLTM ∈ Π2 \ (Σ1 ∪ Π1). (Hint: Use parts (c) and (d) above.)
(Comment: Note that ETM is co-Turing-recognizable and thus ETM ∈ Π1, so ALLTM
is harder than ETM in terms of the lowest level of the arithmetical hierarchy in which
it lies.)

(f) Place as low in the arithmetical hierarchy as possible the language:

INFINITETM = {〈M〉 M is a Turing machine and L(M) is infinite} .
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