Today’s Agenda: All about Learning

- Unsupervised Learning
 - Sparse Coding
 - Predictive Coding

- Supervised learning
 - Perceptrons and Backpropagation

- Reinforcement Learning
 - TD and Actor-Critic learning
Recall from Last Time: Linear Generative Model

Suppose input u was generated by a linear superposition of causes v_1, v_2, ..., v_k with basis vectors (or “features”) g_i

$$u = \sum_i g_i v_i + noise = Gv + n$$
(Assume noise is Gaussian white noise with mean zero)

Bayesian approach

- Find v and G that maximize posterior:
 $$p[v \mid u; G] = k \cdot p[u \mid v; G]p[v; G]$$

- Equivalently, find v and G that maximize log posterior:
 $$F(v, G) = \log p[u \mid v; G] + \log p[v; G] + \log k$$

 \[
 u = Gv + n \\
 \log \text{of Gaussian} \\
 \log N(u; Gv, I) \\
 = -\frac{1}{2} (u - Gv)^T (u - Gv) + C
 \]

 If v_a independent
 $$p[v; G] = \prod_a p[v_a; G]$$
 $$\log p[v; G] = \sum_a \log p[v_a; G]$$

 Prior for individual causes (what should this be?)
What do we know about the causes \(\mathbf{v} \)?

- Idea: Causes independent: only a few of them will be active for any input
 - \(v_a \) will be 0 most of the time but high for a few inputs
 - Suggests a sparse distribution for \(p[v_a; G] \): peak at 0 but with heavy tail (also called super-Gaussian distribution)

Examples of Prior Distributions for Causes

Possible prior distributions

Log prior

\[
p[\mathbf{v}; G] = c \cdot \prod_a \exp(g(v_a))
\]

\[
\log p[\mathbf{v}; G] = \sum_a g(v_a) + c
\]
Finding the optimal \(v \) and \(G \)

- Want to maximize:

\[
F(v, G) = \log p[u \mid v; G] + \log p[v; G] + \log k
\]

\[
= -\frac{1}{2} (u - Gv)^T (u - Gv) + \sum_a g(v_a) + K
\]

- Alternate between two steps:
 - Maximize \(F \) with respect to \(v \) keeping \(G \) fixed
 - How?
 - Maximize \(F \) with respect to \(G \), given the \(v \) above
 - How?

Estimating the causes \(v \) for a given input

Gradient ascent

\[
\frac{dv}{dt} \propto \frac{dF}{dv} = G^T (u - Gv) + g'(v)
\]

- Derivative of \(g \)
- Reconstruction (prediction) of \(u \)
- Firing rate dynamics (Recurrent network)
- Error
- Sparseness constraint
Sparse Coding Network for Estimating v

$$\tau \frac{dv}{dt} = G^T (u - Gv) + g'(v)$$

Corrcted Estimate

[Suggests a role for feedback pathways in the cortex (Rao & Ballard, 1999)]

Learning the Synaptic Weights G

$$\frac{dG}{dt} \propto \frac{dF}{dG} = (u - Gv)v^T$$

Gradient ascent

Learning rule

$$\tau G \frac{dG}{dt} = (u - Gv)v^T$$ \{Hebbian! (similar to Oja’s rule)\}
Result: Learning G for Natural Images

Each square is a column g_i of G (obtained by collapsing rows of the square into a vector).

Almost all the g_i represent local edge features.

Any image patch u can be expressed as:

$$u = \sum_i g_i v_i = Gv$$

Sparse Coding Network is a special case of Predictive Coding Networks

(Olshausen & Field, 1996)
Predictive Coding Model of Visual Cortex

Predictive coding model explains contextual effects

Monkey Primary Visual Cortex

Increased activity for non-homogenous input interpreted as prediction error (i.e., anomalous input): center is not predicted by surrounding context.

(Zipser et al., *J. Neurosci.*, 1996)
Natural Images as a Source of Contextual Effects

What if your data comes with not just inputs but also outputs?

Enter…Supervised Learning
Supervised Learning

Two Primary Tasks

1. **Classification**
 - Inputs \(u_1, u_2, \ldots \) and discrete classes \(C_1, C_2, \ldots, C_k \)
 - Training examples: \((u_1, C_2), (u_2, C_7), \text{ etc.}\)
 - Learn the mapping from an arbitrary input to its class
 - Example: Inputs = images, output classes = face, not a face

2. **Regression**
 - Inputs \(u_1, u_2, \ldots \) and continuous outputs \(v_1, v_2, \ldots \)
 - Training examples: (input, desired output) pairs
 - Learn to map an arbitrary input to its corresponding output
 - Example: Highway driving
 - Input = road image, output = steering angle

The Classification Problem

- • denotes output of +1 (faces)
- ○ denotes output of -1 (other)

Idea: Find a separating hyperplane (line in this case)
Neurons as Classifiers: The “Perceptron”

Artificial neuron:
- m binary inputs (-1 or 1) and 1 output (-1 or 1)
- Synaptic weights w_{ij}
- Threshold μ_i

\[v_i = \Theta(\sum_j w_{ij} u_j - \mu_i) \]

$\Theta(x) = +1$ if $x \geq 0$ and -1 if $x < 0$

What does a Perceptron compute?

Consider a single-layer perceptron
- Weighted sum forms a *linear hyperplane* (line, plane, ...)

\[\sum_j w_{ij} u_j - \mu_i = 0 \]

- Everything *on one side* of hyperplane is in class 1 (output = +1) and everything *on other side* is class 2 (output = -1)
- *Any function that is linearly separable can be computed by a perceptron*
Linear Separability

Example: AND function is linearly separable
⇒ a AND b = 1 if and only if a = 1 and b = 1

Linear hyperplane

Perceptron for AND

What about the XOR function?

<table>
<thead>
<tr>
<th>u_1</th>
<th>u_2</th>
<th>XOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>+1</td>
</tr>
</tbody>
</table>

Can a straight line separate the +1 outputs from the -1 outputs?
Multilayer Perceptrons

- Removes limitations of single-layer networks
 - Can solve XOR
- An example of a two-layer perceptron that computes XOR

 ![Diagram](image)

- Output is +1 if and only if \(x + y + 2\Theta(- x - y - 1.5) > -1 \)
 (Inputs x and y can be +1 or -1)

What if you want to approximate a *continuous* function (i.e., regression)?

Can a network learn to drive?
Example Network

Steering angle

Desired Output:
\(\mathbf{d} = [d_1, d_2, \ldots, d_{30}] \)

Current image

Input \(\mathbf{u} = [u_1, u_2, \ldots, u_{960}] = \text{image pixels} \)

Sigmoid Networks

Output \(\mathbf{v} = g(\mathbf{w}^T \mathbf{u}) = g(\sum_i w_i u_i) \)

Sigmoid output function:
\[
g(a) = \frac{1}{1 + e^{-\beta a}}
\]

Sigmoid is a non-linear “squashing” function: Squashes input to be between 0 and 1. Parameter \(\beta \) controls the slope.
Multilayer Sigmoid Networks

\[v_i = g(\sum_j W_{ji} g(\sum_k w_k u_k)) \]

Output \(v = (v_1 \ v_2 \ \ldots \ v_J)^T \); Desired = \(d \)

Input \(u = (u_1 \ u_2 \ \ldots \ u_K)^T \)

How do we learn these weights?

Backpropagation Learning: Uppermost layer

Minimize output error:

\[E(W, w) = \frac{1}{2} \sum_i (d_i - v_i)^2 \]

Learning rule for hidden-output weights \(W \):

\[W_{ji} \rightarrow W_{ji} - \varepsilon \frac{dE}{dW_{ji}} \quad \{ \text{gradient descent} \} \]

\[\frac{dE}{dW_{ji}} = -(d_i - v_i) g'(\sum_j W_{ji} x_j) x_j \quad \{ \text{delta rule} \} \]
Backpropagation: Inner layer (chain rule)

Minimize output error:

$$E(W, w) = \frac{1}{2} \sum_i (d_i - v_i)^2$$

$$v^m_i = g(\sum_j W_{ji}x_j)$$

$$x^m_j = g(\sum_k w_{jk}u^m_k)$$

Learning rule for input-hidden weights w:

$$w_{kj} \rightarrow w_{kj} - \varepsilon \frac{dE}{dw_{kj}}$$

But:

$$dE \over dw_{kj} = dE \over dx_j \cdot dx_j \over dw_{kj} \{\text{chain rule}\}$$

$$dE \over dw_{kj} = \left[-\sum_{m,i} (d^m_i - v^m_i)g'(\sum_j W_{ji}x^m_j)W_{ji}\right] \cdot g'(\sum_k w_{jk}u^m_k)u^m_k$$

Demos: Pole Balancing and Backing up a Truck

(courtesy of Keith Grochow, CSE 599)

- Neural network learns to balance a pole on a cart
 - System:
 - 4 state variables: $x_{\text{cart}}, v_{\text{cart}}, \theta_{\text{pole}}, v_{\text{pole}}$
 - 1 input: Force on cart
 - Backprop Network:
 - Input: State variables
 - Output: New force on cart
- NN learns to back a truck into a loading dock
 - System (Nyugen and Widrow, 1989):
 - State variables: $x_{\text{cab}}, y_{\text{cab}}, \theta_{\text{cab}}$
 - 1 input: new θ_{steering}
 - Backprop Network:
 - Input: State variables
 - Output: Steering angle θ_{steering}
Humans (and animals in general) don’t get exact supervisory signals (commands for muscles) for learning to talk, walk, ride a bicycle, play the piano, drive, etc.

We learn by trial-and-error (with hints from others)

Might get “rewards and punishments” along the way

Enter…Reinforcement Learning

The Reinforcement Learning “Agent”

![Diagram of Reinforcement Learning](image)
Early Results: Pavlov and his Dog

- Classical (Pavlovian) conditioning experiments
- **Training**: Bell \rightarrow Food
- **After**: Bell \rightarrow Salivate
- Conditioned stimulus (bell) predicts future reward (food)

(http://employees.csbsju.edu/tcreed/pb/pdoganim.html)

Predicting Delayed Rewards

- Reward is typically delivered at the end (when you know whether you succeeded or not)
- Time: $0 \leq t \leq T$ with stimulus $u(t)$ and reward $r(t)$ at each time step t (Note: $r(t)$ can be zero at some time points)
- Key Idea: Make the output $v(t)$ predict total expected future reward starting from time t

$$v(t) \approx \left(\sum_{\tau=0}^{T-t} r(t+\tau) \right)$$
Learning to Predict Delayed Rewards

- Use a set of modifiable weights \(w(t) \) and *predict based on all past stimuli* \(u(t) \):

\[
v(t) = \sum_{\tau=0}^{T} w(\tau) u(t - \tau)
\]

- Would like to find the weights (or filter) \(w(\tau) \) that minimize:

\[
\left(\sum_{\tau=0}^{T-t} r(t + \tau) - v(t) \right)^2
\]

(Can we minimize this using gradient descent and delta rule?)

Yes, BUT…not yet available are the future rewards

Temporal Difference (TD) Learning

- **Key Idea:** Rewrite squared error to get rid of future terms:

\[
\left(\sum_{\tau=0}^{T-t} r(t + \tau) - v(t) \right)^2 = \left(r(t) + \sum_{\tau=0}^{T-t-1} r(t + 1 + \tau) - v(t) \right)^2
\]

\[
\approx \left(r(t) + v(t + 1) - v(t) \right)^2
\]

Minimize this using gradient descent!

- **Temporal Difference (TD) Learning:**

\[
w(\tau) \rightarrow w(\tau) + \delta \left[r(t) + v(t + 1) - v(t) \right] u(t - \tau)
\]

Expected future reward
Prediction
Predicting Delayed Reward: TD Learning

Stimulus at $t = 100$ and reward at $t = 200$

Prediction error δ for each time step (over many trials)

Possible Reward Prediction Error Signal in the Primate Brain

Dopaminergic cells in Ventral Tegmental Area (VTA)

Reward Prediction error? $[r(t) + v(t+1) - v(t)]$

Before Training

After Training

No error

$[0 + v(t+1) - v(t)]$

$[r(t) + v(t+1) - v(t)] \approx 0$
More Evidence for Prediction Error Signals

Dopaminergic cells in VTA

reward

no reward

Negative error

$\begin{align*}
 r(t) &= 0, \nu(t + 1) = 0 \\
 [r(t) + \nu(t + 1) - \nu(t)] &= -\nu(t)
\end{align*}$

That’s great, but how does all that math help me get food in a maze?
Selecting Actions when Reward is Delayed

States: A, B, or C
Possible actions at any state: Left (L) or Right (R)

If you randomly choose to go L or R (random “policy”), what is the expected value v of each state?

Policy Evaluation

For random policy:

- $v(B) = \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 5 = 2.5$
- $v(C) = \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 0 = 1$
- $v(A) = \frac{1}{2} \cdot v(B) + \frac{1}{2} \cdot v(C) = 1.75$

Can learn value of locations using TD learning:

Let value of location $v(u) =$ weight $w(u)$

$w(u) \rightarrow w(u) + \varepsilon \left[r_u + v(u') - v(u) \right]$
Maze Value Learning for Random Policy

Once I know the values, I can pick the action that leads to the higher valued state!

(For all three, $\varepsilon = 0.5$)

Selecting Actions based on Values

Values act as surrogate immediate rewards \rightarrow Locally optimal choice leads to globally optimal policy (for “Markov” environments)
Related to Dynamic Programming in CS (see appendix in text)
Actor-Critic Learning

- Two separate components: Actor (maintains policy) and Critic (maintains value of each state)

1. **Critic Learning ("Policy Evaluation"):**
 - Value of state \(u = v(u) = w(u) \)
 - \(w(u) \rightarrow w(u) + \varepsilon [r_a(u) + v(u') - v(u)] \) (same as TD rule)

2. **Actor Learning ("Policy Improvement"):**
 - \(P(a; u) = \frac{\exp(\beta Q_a(u))}{\sum_b \exp(\beta Q_b(u))} \)
 - Use this to select an action \(a \) at state \(u \)
 - For all \(a' \):
 - \(Q_a(u) \rightarrow Q_a(u) + \varepsilon [r_a(u) + v(u') - v(u)](\delta_{aa'} - P(a'; u)) \)

3. **Interleave 1 and 2**

Actor-Critic Learning in the Maze Task

![Maze Task Diagram]

Probability of going Left at a location

\(P[L; u] \)

- \(u = A \)
- \(u = B \)
- \(u = C \)
Demo of Reinforcement Learning in a Robot
(from http://sysplan.nams.kyushu-u.ac.jp/gen/papers/JavaDemoML97/robodemo.html)

Things to do:

Finish homework 3
Work on group project

Thanks, dopamine!