Computing in carbon

Basic elements of neuroelectronics

-- membranes
-- ion channels
-- wiring

Elementary neuron models

-- conductance based
-- modelers’ alternatives

Wiring neurons together

-- synapses
-- long term plasticity
-- short term plasticity

Wires

-- signal propagation
-- processing in dendrites
Equivalent circuit model of a neuron
Closeup of a patch on the surface of a neuron
The passive membrane

Ohm’s law: $V = I_R R$

Capacitor: $C = \frac{Q}{V}$

Kirchhoff: $I_R + I_C + I_{ext} = 0$

$C \frac{dV}{dt} = -\frac{V}{R} - I_{ext}$
Movement of ions through ion channels

Energetics: $qV \sim k_B T$

$V \sim 25\text{mV}$
Ions move down their concentration gradient until opposed by electrostatic forces.

Nernst: \(E = \frac{k_B T}{zq} \ln \frac{[\text{inside}]}{[\text{outside}]} \)
Each ion has an independent circuit path

Different ion channels have associated conductances.

A given conductance tends to move the membrane potential toward the equilibrium potential for that ion

\[\begin{align*}
E_{Na} & \sim 50 \text{mV} \quad \text{depolarizing} \\
E_{Ca} & \sim 150 \text{mV} \quad \text{depolarizing} \\
E_{K} & \sim -80 \text{mV} \quad \text{hyperpolarizing} \\
E_{Cl} & \sim -60 \text{mV} \quad \text{shunting}
\end{align*} \]

\[V > E \rightarrow \text{positive current will flow outward} \]

\[V < E \rightarrow \text{positive current will flow inward} \]

\[V \rightarrow \text{more polarized} \]
Parallel paths for ions to cross membrane

Several $I-V$ curves in parallel:

New equivalent circuit:
Neurons are excitable
Excitability arises from nonlinearity in ion channels

- Voltage dependent
- Transmitter dependent (synaptic)
- Ca dependent
The ion channel is a complex molecular machine

K channel: open probability increases when depolarized

\[n \text{ describes a subunit} \]
\[n \text{ is open probability} \]
\[1 - n \text{ is closed probability} \]

Transitions between states occur at voltage dependent rates

\[\alpha_n(V) \quad C \rightarrow O \]
\[\beta_n(V) \quad O \rightarrow C \]

\[
\frac{dn}{dt} = \alpha_n(V)(1 - n) - \beta_n(V)n
\]

Persistent conductance
Transient conductances

Gate acts as in previous case

Additional gate can block channel when open

\[P_{Na} \sim m^3h \]

m is activation variable

h is inactivation variable

m and *h* have opposite voltage dependences:
- Depolarization increases *m*, activation
- Hyperpolarization increases *h*, deactivation
We can rewrite:

\[\tau_n(V) \frac{dn}{dt} = n_\infty(V) - n \]

where

\[\tau_n(V) = \frac{1}{\alpha_n(V) + \beta_n(V)} \]

\[n_\infty(V) = \frac{\alpha_n(V)}{\alpha_n(V) + \beta_n(V)} \]
Activation and inactivation dynamics
Putting it together

Ohm’s law: \(V = I R \)
and Kirchhoff’s law

\[
-C_m \frac{dV}{dt} = \sum_i g_i (V - E_i) + I_e
\]

- Capacitative current
- Ionic currents
- Externally applied current
The Hodgkin-Huxley equation

\[C_m \frac{dV}{dt} = - \sum_i g_i (V - E_i) - I_e \]

\[-C_m \frac{dV}{dt} = g_L (V - E_L) + g_K n^4 (V - E_K) + g_{Na} m^3 h (V - E_{Na}) \]

\[\frac{dn}{dt} = \alpha_n (V)(1 - n) - \beta_n (V)n \]

\[\frac{dm}{dt} = \alpha_m (V)(1 - m) - \beta_m (V)m \]

\[\frac{dh}{dt} = \alpha_h (V)(1 - h) - \beta_h (V)h \]
Activation and inactivation dynamics
Dynamics of a spike

\[V \text{ (mV)} \]

\[h_\infty, m_\infty, n_\infty \]

\[E_K, E_Na \]

\[V_{m}(\mu A/\text{mm}^2) \]

\[t (\text{ms}) \]
Ion channel stochasticity
A microscopic stochastic model for ion channel function

approach to macroscopic description
Different from the continuous model:
interdependence between inactivation and activation
transitions to inactivation state 5 can occur only from 2, 3 and 4
k_1, k_2, k_3 are constant, not voltage dependent
The integrate-and-fire model

Like a passive membrane:

\[C_m \frac{dV}{dt} = -g_L(V - E_i) - I_e \]

but with the additional rule that

when \(V \rightarrow V_T \), a spike is fired

and \(V \rightarrow V_{\text{reset}} \).

\(E_L \) is the resting potential of the “cell”.

![Graph showing integrate-and-fire model output](image)
The spike response model

Kernel f for subthreshold response \leftarrow replaces leaky integrator
Kernel for spikes \leftarrow replaces “line”

- determine f from the linearized HH equations
- fit a threshold
- paste in the spike shape and AHP

Gerstner and Kistler
The generalized linear model

- general definitions for k and h
- robust maximum likelihood fitting procedure

Truccolo and Brown, Paninski, Pillow, Simoncelli
Building circuits

Eickholt lab, Kings College London
Synapses

Signal is carried chemically across the synaptic cleft
Synaptic signalling

Neurotransmitter: glutamate
AMPA receptor
NMDA receptor
Cation (Na)
Ca
Requires pre- and post-synaptic depolarization
Connection strength

\[w = npq \]
Long-term potentiation

Wiki commons
Long-term depression

Ronesi and Lovinger, J Physiol 2005
Empirical model

\[
\frac{dW_i(t)}{dt} = \frac{1}{\tau([Ca^{2+}]_i)} \left(\Omega([Ca^{2+}]_i) - W_i \right)
\]

Shouval, .., Cooper, Biological Cybernetics 2002
Hebbian plasticity

\[\Delta w_{ij} = \eta x_i x_j \]

Hebb, 1949
Requires pre- and post-synaptic depolarization

Coincidence detection, Hebbian
Spike-timing dependent plasticity

A. LTP
 LTD
 $t_{post} - t_{pre}$

B. LTP
 LTD
 $t_{post} - t_{pre}$

C. LTP
 LTD
 $t_{post} - t_{pre}$

D. LTP
 LTD
 $t_{post} - t_{pre}$

E. LTP
 LTD
 $t_{post} - t_{pre}$
Short-term synaptic plasticity

Depression

Facilitation
Modeling short-term synaptic plasticity

\[\frac{dR}{dt} = \frac{I}{\tau_{rec}} \]

\[\frac{dE}{dt} = -\frac{E}{\tau_{\text{inact}}} + U_{SE}R \delta(t - t_{AP}) \]

\[I = 1 - R - E, \]

Tsodyks and Markram, 1997
Modeling short-term synaptic plasticity

Tsodyks and Markram, 1997
Gap junctions

Echevaria and Nathanson