Welcome to CSE/NEUBEH 528: Computational Neuroscience

Instructors:
Rajesh Rao (rao@cs)
Adrienne Fairhall (fairhall@u)
TA: Yanping Huang (huangyp@u)

Today’s Agenda

✦ Course Info and Logistics

✦ Motivation
 ➤ What is Computational Neuroscience?
 ➤ Illustrative Examples

✦ Neurobiology 101: Neurons and Networks
Course Information

- Browse class web page for syllabus and course information:
- Lecture slides will be made available on the website
- Textbooks
 - Required:
 - *Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems* by P. Dayan & L. Abbott
 - Recommended:
 - *Tutorial on Neural Systems Modelling* by T. Anastasio

Course Topics

- **Descriptive Models of the Brain**
 - How is information about the external world *encoded* in neurons and networks? (Chapters 1 and 2)
 - How can we *decode* neural information? (Chapters 3 and 4)
- **Mechanistic Models of Brain Cells and Circuits**
 - How can we reproduce the behavior of a *single neuron* in a computer simulation? (Chapters 5 and 6)
 - How do we model a *network* of neurons? (Chapter 7)
- **Interpretive Models of the Brain**
 - Why do brain circuits operate the way they do?
 - What are the *computational principles* underlying their operation? (Chapters 7-10)
Course Goals

- **General Goals: Be able to**
 1. Quantitatively describe what a given component of a neural system is doing based on experimental data
 2. Simulate on a computer the behavior of neurons and networks in a neural system
 3. Formulate computational principles underlying the operation of neural systems

- We would like to enhance interdisciplinary cross-talk
 - Neuroscience
 - Computing and Engineering

 (Experiments, methods, protocols, data, …)

 (Computational principles, algorithms, simulation software/hardware, …)

Workload and Grading

- Course grade (out of 4.0) will be based on homeworks and a final group project according to:
 - Homeworks: 70%
 - Final Project: 30%

- No midterm or final

- **Homework exercises:** Either written or Matlab-based
 - Go over Matlab tutorials and homework on class website

- **Group Project:** As part of a group of 1-3 persons, investigate a "mini-research" question using methods from this course
 - Each group will submit a report and give a presentation
Let’s begin…

What is Computational Neuroscience?

Computational Neuroscience

✦ “The goal of computational neuroscience is to explain in computational terms how brains generate behaviors” (Sejnowski)

✦ Computational neuroscience provides tools and methods for “characterizing what nervous systems do, determining how they function, and understanding why they operate in particular ways” (Dayan and Abbott)

usaha Descriptive Models (What)
usaha Mechanistic Models (How)
usaha Interpretive Models (Why)
An Example: “Receptive Fields”

✦ What is the receptive field of a brain cell (neuron)?
 ➔ Any ideas?

✦ Classical Definition: The region of sensory space that activates a neuron (Hartline, 1938)
 ➔ Example: Region of the retina where a spot of light activates a retinal cell

✦ Current Definition: Specific properties of a sensory stimulus that generate a strong response from the cell
 ➔ Example: A circular spot of light that turns on at a particular location on the retina
An Example: Cortical Receptive Fields

Let’s look at:

I. A **Descriptive Model** of Receptive Fields
II. A **Mechanistic Model** of Receptive Fields
III. An **Interpretive Model** of Receptive Fields

I. Descriptive Model of Receptive Fields

- **Retinal Ganglion Cells**
 - Output responses (spike trains) from a Retinal Ganglion Cell

(From Nicholls et al., 1992)
I. Descriptive Model of Receptive Fields

Mapping a retinal receptive field with spots of light

- ON-CENTER CELL RESPONSES
 - Central spot of light
 - Peripheral spot

- OFF-CENTER CELL RESPONSES
 - Light

(From Nicholls et al., 1992)

Descriptive Models: Cortical Receptive Fields

Examples of receptive fields in primary visual cortex (V1)

(From Nicholls et al., 1992)
Extracting a *Quantitative* Descriptive Model

- The Reverse Correlation Method (Brief intro for now)

Random Bars Sequence (white noise stimulus) © I. Ohzawa

For each output spike, look back and record stimulus sequence occurring before the spike; Compute the average sequence

A Quantitative Model of a V1 Receptive Field

Spatial Receptive Field for $T = 0-300$ ms

Space-Time Receptive Field

(Copyright 1995, Izumi Ohzawa)
II. Mechanistic Model of Receptive Fields

The Question: How are receptive fields constructed using the neural circuitry of the visual cortex?

How are these oriented receptive fields obtained?
II. Mechanistic Model of Receptive Fields: V1

Model suggested by Hubel & Wiesel in the 1960s: V1 RFs are created from converging LGN inputs

Center-surround LGN RFs are displaced along preferred orientation of V1 cell

This simple model is still controversial!

(From Nicholls et al., 1992)

III. Interpretive Model of Receptive Fields

The Question: Why are receptive fields in V1 shaped in this way?

What are the computational advantages of such receptive fields?
III. Interpretive Model of Receptive Fields

- **Computational Hypothesis:** Suppose the goal is to *represent images as faithfully and efficiently as possible* using neurons with receptive fields RF_1, RF_2, etc.

- Given image I, want to *reconstruct* I using neural responses r_1, r_2 etc.:
 \[I = \sum_i RF_i r_i \]

- *Idea:* Find the RF_i that *minimize* the squared pixelwise *errors*: $\| I - \hat{I} \|^2$ and are as *independent* from each other as possible.

III. Interpretive Model of Receptive Fields

- Start out with *random* RF_i and run your algorithm on natural images

Natural Images

Receptive Fields from Natural Images

White

Dark

=R. Rao, 528 Lecture 1
III. Interpretive Model of Receptive Fields

Conclusion: The brain may be trying to find *faithful and efficient* representations of an animal’s natural environment.

We will explore a variety of *Descriptive, Mechanistic,* and *Interpretive* models throughout this course.
Neurobiology 101:
Brain regions, neurons, and synapses

Our 3-pound universe
Major Brain Regions: **Brain Stem & Cerebellum**

- **Medulla**
 - Breathing, muscle tone
 - and blood pressure

- **Pons**
 - Connects brainstem with cerebellum & involved in sleep and arousal

- **Cerebellum**
 - Coordination of voluntary movements and sense of equilibrium

Major Brain Regions: **Midbrain & Retic. Formation**

- **Midbrain**
 - Eye movements, visual and auditory reflexes

- **Reticular Formation**
 - Modulates muscle reflexes, breathing & pain perception. Also regulates sleep, wakefulness & arousal
Major Brain Regions: **Thalamus & Hypothalamus**

- **Thalamus**
 “Relay station” for all sensory info (except smell) to the cortex

- **Hypothalamus**
 Regulates basic needs fighting, fleeing, feeding, and mating

Major Brain Regions: **Cerebral Hemispheres**

- Consists of: Cerebral cortex, basal ganglia, hippocampus, and amygdala

- Involved in perception and motor control, cognitive functions, emotion, memory, and learning
Enter…the neuron ("brain cell")

Neuron Doctrine/ Dogma:
“The neuron is the appropriate basis for understanding the computational and functional properties of the brain”
First suggested in 1891 by Waldeyer

From Kandel, Schwartz, Jessel, Principles of Neural Science, 3rd edn., 1991, pg. 21
The Idealized Neuron

Input Spikes

Dendrites

Cell body (soma)

Axon hillock

Myelinated axon

Output Spike

Graded EPSP
(Excitatory Post-Synaptic Potentials)

Trigger: all-or-none spike initiated

Conducted all-or-none spike (conduction of spike to next cell)

What is a Neuron?

- A “leaky bag of charged liquid”
- Contents of the neuron enclosed within a cell membrane
- Cell membrane is a lipid bilayer
 - Bilayer is impermeable to charged ions such as Na⁺, Cl⁻, K⁺, and Ca²⁺

The Electrical Personality of a Neuron

- Each neuron maintains a *potential difference* across its membrane
 - Inside is -70 to -80 mV relative to outside
 - Ion concentration $[\text{Na}^+]$, $[\text{Cl}^-]$, $[\text{Ca}^{2+}]$ and $[\text{Ca}^{2+}]$ higher outside; $[\text{K}^+]$ and organic anions $[\text{A}^-]$ higher inside
 - *Ionic pump* maintains -70 mV difference by expelling Na^+ out and allowing K^+ ions in

Influencing a Neuron’s Electrical Personality

How can the electrical potential difference be changed in local regions of a neuron?
Membrane Proteins: The Gatekeepers

- Proteins in membranes act as pores or channels that allow specific ions to pass through.
 - E.g. Pass K⁺ but not Cl⁻ or Na⁺
- These “ionic channels” are gated
 - Voltage-gated: Probability of opening depends on membrane voltage
 - Chemically-gated: Binding to a chemical causes channel to open
 - Mechanically-gated: Sensitive to pressure or stretch

Gated Channels allow Neuronal Signaling

- Inputs from other neurons → chemically-gated channels (at “synapses”) → Changes in local membrane potential
- This causes opening/closing of voltage-gated channels in dendrites, body, and axon, resulting in depolarization (positive change in voltage) or hyperpolarization (negative change)
The Output of a Neuron: Action Potentials

- **Voltage-gated channels** cause action potentials (spikes)
 1. Rapid Na\(^+\) influx causes rising edge
 2. Na\(^+\) channels deactivate
 3. K\(^+\) outflux restores membrane potential

- **Positive feedback** causes spike
 - Na\(^+\) influx increases membrane potential, causing *more* Na\(^+\) influx

From Kandel, Schwartz, Jessel, Principles of Neural Science, 3\(^{rd}\) edn., 1991, pg. 110

Propagation of a Spike along an Axon

From: http://psych.hanover.edu/Krantz/neural/actpotanim.html
Communication between Neurons: Synapses

- **Synapses** are the “connections” between neurons
 - **Electrical** synapses (gap junctions)
 - **Chemical** synapses (use neurotransmitters)
- Synapses can be **excitatory** or **inhibitory**
- **Synapse Doctrine**: Synapses are the basis for memory and learning

R. Rao, 528 Lecture 1

Distribution of synapses on a real neuron…
An **Excitatory** Synapse

Input spike → Neurotransmitter release →
Binds to Na channels (which open) →
Na+ influx →
Depolarization due to EPSP (excitatory postsynaptic potential)

An **Inhibitory** Synapse

Input spike → Neurotransmitter release →
Binds to K channels →
K+ leaves cell →
Hyperpolarization due to IPSP (inhibitory postsynaptic potential)
Down in the Synaptic Engine Room

A reductionist’s dream! (or nightmare?)

Note: Even this is a simplification!

Synaptic plasticity: Adapting the connections

- **Long Term Potentiation (LTP):** Increase in synaptic strength that lasts for several hours or more
 - Measured as an increase in the excitatory postsynaptic potential (EPSP) caused by presynaptic spikes

LTP observed as an increase in size or slope of EPSP for the same presynaptic input
Types of Synaptic Plasticity

- **LTP**: synaptic strength increases after prolonged pairing of presynaptic and postsynaptic spiking (*correlated firing of two connected neurons*).

- **Long Term Depression (LTD)**: Reduction in synaptic strength that lasts for several hours or more.

Example of measured synaptic plasticity

(From: http://www.nature.com/npp/journal/v33/n1/fig_tab/1301559f1.html)
Types of Synaptic Plasticity

- **LTP**: synaptic strength increases after prolonged pairing of presynaptic and postsynaptic spiking (*correlated firing of two connected neurons*).

- **Long Term Depression (LTD)**: Reduction in synaptic strength that lasts for several hours or more

- **Spike-Timing Dependent Plasticity**: LTP/LTD depends on relative timing of pre/postsynaptic spiking

Spike-Timing Dependent Plasticity

- Amount of increase or decrease in synaptic strength (LTP/LTD) depends on relative timing of pre & postsynaptic spikes

(Bi & Poo, 1998)
Comparing Neural versus Digital Computing

- **Device count:**
 - Human Brain: 10^{11} neurons (each neuron ~ 10^4 connections)
 - Silicon Chip: 10^{10} transistors with sparse connectivity

- **Device speed:**
 - Biology has up to 100µs temporal resolution
 - Digital circuits will soon have a 100ps clock (10 GHz)

- **Computing paradigm:**
 - Brain: Massively parallel computation & adaptive connectivity
 - Digital Computers: sequential information processing via CPUs with fixed connectivity

- **Capabilities:**
 - Digital computers excel in math & symbol processing…
 - Brains: Better at solving ill-posed problems (vision, speech)

Conclusions and Summary

- **Structure and organization of the brain suggests computational analogies**
 - **Information storage**: Physical/chemical structure of neurons and synapses
 - **Information transmission**: Electrical and chemical signaling
 - **Primary computing elements**: Neurons
 - **Computational basis**: Currently unknown (but inching closer)

- **We can understand neuronal computation by understanding the underlying primitives through:**
 - Descriptive models
 - Mechanistic models
 - Interpretive models
Next Class

✦ Descriptive Models
 ➔ Neural Encoding

✦ Things to do:
 ➔ Visit course website
 http://www.cs.washington.edu/education/courses/528/
 ➔ Matlab practice: Homework 0 and tutorials online
 ➔ Read Chapter 1 in Dayan & Abbott textbook