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Qutline

MLE: Maximum Likelihood Estimators

EM: the Expectation Maximization Algorithm

Next: Motif description & discovery



Learning From Data:
MLE

Maximum Likelihood Estimators



Probability Basics, |

Ex. Ex.

Sample Space
{1,2,...,6} R

Distribution
p1,---,P6 = 0; Zpizl f(x) >:O;/f(x)d:r;:1

1<i<6 R
e.g.
L ~@-w?/(20%)

= =ps=1/6 fla) = om0

vV 2mo?

& 0 5 sa @ A pdf,not
: -~ . probability

| 7




Probability Basics, Il

Expectation E(g) = Z g(1)p; E(g) :/g(x)f(a:)daz
1<i<6 R
Population
mean = Z D ,u:/xf(a:)dx
1<i<6 R
. 2 Z . 2 2 2
variance o7 = (1 — p1)*p; o —/(x—,u) f(x)dx
1<i<6 R
Sample
mean T = x;/n
1<i<n

variance 52 = Z (z; —2)%/n



Parameter Estimation

Assuming sample x/, x2, ..., Xn is from a
parametric distribution f(x|0), estimate 0.

E.g.. Given sample HHTTTTTHTHTTTHH
of (possibly biased) coin flips, estimate

O = probability of Heads



Likelihood

P(x | 8): Probability of event x given model 6

Viewed as a function of x (fixed 0), it's a probability
Eg,2xP(x|0)=I
Viewed as a function of O (fixed x), it’s a likelihood

E.g., 26 P(x | O) can be anything; relative values of interest.

E.g.,if O = prob of heads in a sequence of coin flips then
P(HHTHH | .6) > P(HHTHH | .5),
l.e., event HHTHH is more likely when 8 = .6 than 0 = .5

And what 8 make HHTHH most likely?



Likelihood Function

Probability of HHTHH,

given P(H) = O:
0 04(1-0)
0.2 0.0013
0.5 0.0313
0.8 0.0819
0.95 0.0407

P( HHTHH | Theta)
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Maximum Likelihood
Parameter Estimation

One (of many) approaches to param. est.
Likelihood of (indp) observations x , x,, ..., X_

L(wr,@a, - on | 0) = [ £ | 0)
1=1

As a function of 8, what B maximizes the

likelihood of the data actually observed
Typical approach: %L(aﬂ ) =0 or %logL(f\ 0) =0



Example |

n coin f|IpS,XI,X2, v X5 N tails, n, heads, n,+n, =n;

O = probability of heads
L(zi,x0,...,2, | 0)

log L(x1,29,...,2, | 0)

%logl}(azl,aﬁg, e, Xy | 0)

Setting to zero and solving:

0.o0z
0.0015

|

dL/d6 =0

0.2 0.4 0.6 0.8 1

ng log(1 — 0) + nqy log 8

A

0

Observed fraction of
successes in sample is
MLE of success
probability in population

(Also verify it’s max, not min, & not better on boundary)



Parameter Estimation

Assuming sample xj, x2, ..., Xn is from a
parametric distribution f(x|0), estimate 0.

E.g.: Given n normal samples,
estimate mean & variance

flz) = 1o~ (z—n)?/(20%)

2w o2

(p,0°)

0




EX. 2: z; ~ N(u,0%), 0> =1, punknown

1 2
L(xy,z9,...,2,]0) = H o—(w:i—6)%/2

|
|
DO | —
=
DO
N
|
)
|
=
N

In L(xy,x0,...,2,|0)

d%lnL(xl,xQ,...,xn]H) - Z (z; — 6)

And verify it's max, B | B
not min & not better o (Zlgign 5’3%) —nt = 0
on boundary

_ /\ Sample mean is MLE of population mean
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Ex. 3, (cont.)

(2i — 01)
205
_1 27 I (:1:2 — 91)2
2 2704 26’%

1
InL(xy,x0,...,x,|01,02) = Z —§ln27T92—

1<i<n

= 0

8192 1nL(JZ1, L2,y ... 7xn‘917 92)
1<i<n

A

0y = (Ticical@i—0:1)?) /n = 5

A consistent, but biased estimate of population variance.
/ (An example of overfitting.) Unbiased estimate is:

l.e., limn- o A (x;—01)2
- . 1
= correct 92 — Zlgign n—1

Moral: MLE is a great idea, but not a magic bullet




Aside: Is it Biased? Why!?

Is it? Yes. As an extreme,whenn = 1,0,=0.

Why!? A bit harder to see, but think about n = 2. Then
0/ is exactly between the two sample points, the A
position that exactly minimizes the expression for 0,.
Any other choices for 81, 82 make the likelihood of the
observed data slightly lower. But it’s actually pretty
unlikely that two sample points would be chosen
exactly equidistant from, and on opposite sides of the

mean, so the MLE 03 systematically underestimates 0..



EM

The Expectation-Maximization
Algorithm



More Complex Example

00000 0—© —000-00- 0

(A modeling decision, not a math problem...,
but if later, what math?) 20



A Real Example:

CpG content of human gene promoters

1000
(7]
§ 800
(]
§
2 600
)
S 400
£
z
200 -
0

Normalized CpG

“A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two
distinct classes of promoters” Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

21
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Gaussian Mixture Models / Model-based Clustering

90000 0—©O 9—000- 00 00—
Parameters 6
means L4 (42
variances 0% o2
mixing parameters T To=1—m7
2 2
P.D.F. f(x|lp,07)  flx|p2,03)
| ikelihood
2 2 No
L(CEl,ZEQ, e ,Zlin|,LL1,,LL2,O'1,O'2,7'1,7'2)
closed-
form

2
— H?:l Zj:l ij(iffina%Z-) max

22






Lj

-10

~10.2, —10, —9.8
~0.2, 0, 0.2
11.8, 12, 12.2




Lj

-10

~10.2, —10, —9.8
~0.2, 0, 0.2
11.8, 12, 12.2




A What-Ilf Puzzle

Likelihood v,

~

g 2 2
L(ZCl,ZCQ, “ e ,xn’/JLly/LQ)Ol)O-Z?Tl?TQ)

n 2
= [[ims Zj:l 7 f (@il py, (732‘)
Messy: no closed form solution known for
finding © maximizing L

But what if we
knew the

hidden data?

- 1 if z; drawn from f;
“iJ = 1 0 otherwise

26



EM as Egg vs Chicken

IF z; known, could estimate parameters O
E.g., only points in cluster 2 influence w,, 02 NN

T — e —

IF parameters O known, could estimate z;

E.g., if [xi — wil/o1 << |xi = wa|/02, then zii >> zp ]

But we know neither; (optimistically) iterate:

E: calculate expected zj, given parameters
M: calc “MLE” of parameters, given E(z;)

Overall, a clever “hill-climbing” strategy

27



Simple Version:
“Classification EM”

If z; < .5, pretend it’s 0; z; > .5, pretend it’s |
l.e., classify points as component O or |

Now recalc 0, assuming that partition
Then recalc z; , assuming that O

Then re-recalc 0, assuming new z;, etc., etc.

“Full EM” is a bit more involved, but this is the crux.

28



Full EM

x;'s are known; 6 unknown. Goal is to find MLE 6 of:
L(:Ul, PN D) ‘ 9) (hidden data likelihood)
Would be easy if z;;'s were known, i.e., consider:
L(:El, ey Ly 1192129 -+ - 5 "N2 | 9) (complete data likelihood)
But 2;;'s aren’t known.
Instead, maximize expected likelihood of visible data
E(L(x1,...,Tn, 211,212, - - -, 2n2 | 0)),

where expectation is over distribution of hidden data (z;;'s)

29



The E-step:
Find E(Zj), i.e. P(Zi=1)

Assume O known & fixed

A (B): the event that x; was drawn from fi (f2)
N

D: the observed datum x; /0.19&0\*
Expected value of z is P(A|D) "
P(D|A)P(A
P(A|D) = (DIAP(A) Repeat
P(D) :
or
P(D) = P(D|A)P(A)+ P(D|B)P(B) each

Xi

= fi(@il0) 1+ falzil02) T2

30



Complete Data
Likelihood

L 1 if 1 drawn from f;
"7 1 0 otherwise

Recall:

so, correspondingly,

7‘1f1<5171 | 6)) If 211 = 1
Tofa(x1 | @) otherwise

L(z1,215 | 0) = {

Formulas with “if's” are messy; can we blend more smoothly?
Yes, many possibilities. ldea 1:

L(z1,215 10) = z11-1ifi(z1 | 0) + z12 - o fa(z1 | 0)

ldea 2 (Better):
L(z1,21510) = (rifi(x1 ] 0))"* - (12 fa(z1 | 0))2

31



M-step:
Find 6 maximizing E(log(Likelihood))

(For simplicity, assume 01 =02 =0;71 =70 = .5 = T)

- (T3 — iy
L(Z,Z2|0) = H exp | — Z Zij 202‘7
1<i<n 1<;<2 U

E 77 — 1 2 (z; — Mj)2
log L(Z,z2 | 0)] = F Z log T — 5 log 2mo“ — Z 2

. , 202
| 1sisn 1<j<2 |
1 2 (i — py)°
— Z log T — 510g27m — Z Elz;;] 2023
1<i<n 1<5<2

Find & maximizing this as before, using E|z;;] found in E-step. Result:

pi = >y Elzijlei/ > i Elzi]| (intuit: avg, weighted by subpop prob)

32




2 Component Mixture

01

mul| -20.00

mu2 6.00
x1 -6 z11
x2 -5 z21
x3 -4 z31
x4 0 z41
x5 4 z51
x6 5 z61
x7 6 z71

=0,=1; t=05

5.11E-12
2.61E-23
1.33E-34
9.09E-80
6.19E-125
3.16E-136
1.62E-147

1.00E+00
1.00E+00
9.98E-01
1.52E-08
5.75E-19
1.43E-21
3.53E-24

1.00E+00
1.00E+00
1.00E+00
4.11E-03
2.64E-18
4.20E-22
6.69E-26

-4.99
3.75

33



EM Summary

Fundamentally a max likelihood parameter
estimation problem

Useful if analysis is more tractable when 0/
hidden data z known

Iterate:
E-step: estimate E(z) for each z, given O
M-step: estimate 8 maximizing E(log likelihood)
given E(z) [where “E(logl)” is wrt random z ~ E(z) = p(z=1)]

34



EM lIssues

Under mild assumptions (sect | 1.6), EM is
guaranteed to increase likelihood with every
E-M iteration, hence will converge.

But may converge to local, not global, max.
(Recall the 4-bump surface...)

Issue is intrinsic (probably), since EM is often
applied to NP-hard problems (including
clustering, above, and motif-discovery, soon)

Nevertheless, widely used, often effective

35



