CSE 527
Computational Biology
Autumn 2007
Lectures 4-5:
BLAST
Alignment score significance
PCR and DNA sequencing

This Week’s Plan

• BLAST
• Scoring
• Weekly Bio Interlude: PCR & Sequencing

A Protein Structure:
(Dihydrofolate Reductase)

Sequence Evolution

Nothing in Biology Makes Sense Except in the Light of Evolution
− Theodosius Dobzhansky, 1973

• Changes happen at random
• Deleterious/neutral/advantageous changes unlikely/possibly/likely spread widely in a population
• Changes are less likely to be tolerated in positions involved in many/close interactions, e.g.
 − enzyme binding pocket
 − protein/protein interaction surface
 − …
BLAST: The most widely used comp bio tool
• Which is better: long mediocre match or a few nearby, short, strong matches with the same total score?
 -- score-wise, exactly equivalent
 -- biologically, later may be more interesting, & is common
 -- at least, if must miss some, rather miss the former
• BLAST is a heuristic emphasizing the later
 -- speed/sensitivity tradeoff: BLAST may miss former, but gains greatly in speed

BLAST: What
• Input:
 -- a query sequence (say, 300 residues)
 -- a data base to search for other sequences similar to the query (say, $10^4 \cdot 10^9$ residues)
 -- a score matrix $\sigma(r,s)$, giving cost of substituting r for s (& perhaps gap costs)
 -- various score thresholds & tuning parameters
• Output:
 -- "all" matches in data base above threshold
 -- "E-value" of each

BLAST: How
Idea: find parts of data base near a good match to some short subword of the query
• Break query into overlapping words w_i of small fixed length (e.g. 3 aa or 11 nt)
• For each w_i, find (empirically, ~50) "neighboring" words v_{ij} with score $\sigma(w_i, v_{ij}) > \text{thresh}_1$
• Look up each v_{ij} in database (via prebuilt index) -- i.e., exact match to short, high-scoring word
• Extend each such "seed match" (bidirectional)
• Report those scoring $> \text{thresh}_2$, calculate E-values

BLAST: Example
query
deadly

DB
ddgearlyk . . .

hits
ddge 10
early 18

\begin{align*}
&\text{query:} \quad \text{deadly} \\
&\text{DB:} \quad \text{ddgearlyk . . .} \\
&\text{hits:} \quad \text{ddge 10} \\
&\text{early 18} \quad \geq 10 \text{ (thresh}_2) \\
\end{align*}
BLOSUM 62

<table>
<thead>
<tr>
<th>A</th>
<th>R</th>
<th>N</th>
<th>H</th>
<th>D</th>
<th>C</th>
<th>E</th>
<th>G</th>
<th>O</th>
<th>Q</th>
<th>W</th>
<th>Y</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>-3</td>
<td>2</td>
</tr>
<tr>
<td>-1</td>
<td>5</td>
<td>0</td>
<td>-2</td>
<td>-3</td>
<td>1</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>-3</td>
<td>2</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>-2</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-3</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>-4</td>
</tr>
<tr>
<td>-2</td>
<td>-2</td>
<td>1</td>
<td>6</td>
<td>-3</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>-3</td>
<td>-4</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>-3</td>
<td>3</td>
<td>9</td>
<td>0</td>
<td>-4</td>
<td>3</td>
<td>-3</td>
<td>-1</td>
<td>-3</td>
<td>-2</td>
<td>1</td>
</tr>
</tbody>
</table>

Significance of Alignments

- Is "42" a good score?
- **Compared to what?**

 - Usual approach: compared to a specific "null model", such as "random sequences"

BLAST Refinements

- "Two hit heuristic" -- need 2 nearby, nonoverlapping, gapless hits before trying to extend either
- "Gapped BLAST" -- run heuristic version of Smith-Waterman, bi-directional from hit, until score drops by fixed amount below max
- PSI-BLAST -- For proteins, iterated search, using "weight matrix" pattern from initial pass to find weaker matches in subsequent passes

Hypothesis Testing:
A Very Simple Example

- Given: A coin, either fair (p(H)=1/2) or biased (p(H)=2/3)
- Decide: which
- How? Flip it 5 times. Suppose outcome D = HHHHT
- Null Model/Null Hypothesis M0: p(H)=1/2
- Alternative Model/Alt Hypothesis M1: p(H)=2/3
- Likelihoods:
 - \(P(D | M_0) = (1/2)(1/2)(1/2)(1/2)(1/2) = 1/32 \)
 - \(P(D | M_1) = (2/3)(2/3)(2/3)(2/3)(2/3) = 16/243 \)
- Likelihood Ratio: \(\frac{P(D | M_1)}{P(D | M_0)} = \frac{16/243}{1/32} = \frac{512}{243} = 2.1 \)

 I.e., alt model is ~2.1x more likely than null model, given data
Hypothesis Testing, II

• Log of likelihood ratio is equivalent, often more convenient
 – add logs instead of multiplying…
• “Likelihood Ratio Tests”: reject null if LLR > threshold
 – LLR > 0 disfavors null, but higher threshold gives stronger evidence against
• Neyman-Pearson Theorem: For a given error rate, LRT is as good a test as any (subject to some fine print).

p-values

• the p-value of such a test is the probability, assuming that the null model is true, of seeing data as extreme or more extreme than what you actually observed
• e.g., we observed 4 heads; p-value is prob of seeing 4 or 5 heads in 5 tosses of a fair coin
• Why interesting? It measures probability that we would be making a mistake in rejecting null.
• Usual scientific convention is to reject null only if p-value is < 0.05; sometimes demand p << 0.05
• can analytically find p-value for simple problems like coins; often turn to simulation/permutation tests for more complex situations; as below

A Likelihood Ratio Test for Alignment

• Defn: two proteins are homologous if they are alike because of shared ancestry; similarity by descent
• suppose among proteins overall, residue x occurs with frequency p_x
• then in a random alignment of 2 random proteins, you would expect to find x aligned to y with prob $p_x p_y$
• suppose among homologs, x & y align with prob p_{xy}
• are seqs X & Y homologous? Which is more likely, that the alignment reflects chance or homology? Use a *likelihood ratio test.*

Non-ad hoc Alignment Scores

• Take alignments of homologs and look at frequency of x-y alignments vs freq of x, y overall
• Issues
 – biased samples
 – evolutionary distance
• BLOSUM approach
 – large collection of trusted alignments (the BLOCKS DB)
 – subsetted by similarity, e.g. BLOSUM62 => 62% identity

$$\sum_i \log \frac{p_{x_i y_i}}{p_x p_y}$$

$$\frac{1}{\lambda} \log_2 \frac{p_{xy}}{p_x p_y}$$
ad hoc Alignment Scores?

- Make up any scoring matrix you like
- Somewhat surprisingly, under pretty general assumptions, it is equivalent to the scores constructed as above from some set of probabilities \(p_{xy} \), so you might as well understand what they are

 e.g., average scores should be negative, but you probably want that anyway, otherwise local alignments turn into global ones, and some score must be \(> 0 \), else best match is empty

Overall Alignment Significance, I
A Theoretical Approach: EVD

Let \(X_i \), \(1 \leq i \leq N \), be indp. random variables drawn from some (non-pathological) distribution

Q. what can you say about distribution of \(y = \text{sum} \{ X_i \} \)?
A. \(y \) is approximately normally distributed

Q. what can you say about distribution of \(y = \text{max} \{ X_i \} \)?
A. It's approximately an Extreme Value Distribution (EVD)

\[
P(y \leq z) = \exp(-KNe^{-\lambda z})
\]

For ungapped local alignment of seqs \(x, y, N \sim |x| |y| \)

\(\lambda, K \) depend on scores, etc., or can be estimated by curve-fitting random scores to (*) (cf. reading)

BLOSUM 62

	A	R	N	D	C	Q	E	G	H	L	K	M	F	P	S	T	W	Y	V			
A	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-2	-1	1	0	-3	-2	0				
R	-1	5	0	-2	-3	1	0	2	0	-3	-2	2	-1	3	-2	-1	-1	-2	-3			
N	-2	0	6	1	-3	0	0	1	0	-3	-2	3	0	-2	-3	-2	1	0	-4	-2	-3	
D	-2	-2	1	6	-3	0	2	-1	-1	3	-4	-1	-3	-3	-1	0	-1	-4	-3	-3		
C	0	-3	-3	-3	9	3	-4	3	-3	-1	1	-3	1	-2	3	-1	1	-1	2	-2	-1	-1
G	-1	1	0	0	-3	5	2	-2	0	-3	2	1	0	3	-3	1	0	-1	-2	-1	-2	-2
E	-1	0	0	2	-4	2	5	-2	0	3	3	1	2	-3	-1	0	-1	3	-2	-2	-2	-2
H	0	-2	0	1	-1	3	6	-2	-4	4	-2	3	-3	-3	0	2	-2	3	-3			
P	-2	0	-1	-1	3	0	0	-2	6	8	3	-1	2	-1	-2	1	-1	2	-2			
I	-1	-3	-3	-3	-3	5	3	-3	-4	3	2	3	1	0	-3	2	1	-3	1	3	1	
L	-1	-2	-3	-4	-1	2	-3	-4	3	2	4	-2	2	0	-3	-2	-1	-2	-1	1		
K	-1	2	0	-1	-3	1	1	-2	-1	-3	2	5	1	-3	-1	0	-1	3	-2	-2		
M	-1	-1	-2	-3	-1	0	-2	-3	2	1	2	-1	5	0	-2	-1	-1	-1	-1	1		
F	-2	3	-3	3	-2	-3	6	3	3	-3	0	0	-2	4	2	-2	1	3	-3			
H	-1	-2	0	-1	-3	0	0	-2	3	-2	-3	3	2	-3	-3	1	-2	4	4	3	-3	
P	2	-3	3	-3	-3	7	7	1	-1	-4	-3	-2	7	1	-3	2	0	0	3	1		
S	0	0	1	0	1	0	0	0	0	-1	2	-2	0	0	1	0	3	-2	11	2		
T	0	-1	0	-1	-1	-1	-1	-2	1	-1	-1	-2	-1	1	5	2	-2	0				
W	0	-3	-4	-4	-2	2	-3	2	3	-3	-3	1	1	-4	3	-3	-2	11	2			
Y	0	-2	-2	-3	-2	1	-2	3	2	1	-2	1	3	3	-2	2	2	7	-1			
V	0	-3	-3	-3	-3	-2	-2	-3	3	3	2	1	1	2	3	-3	-2	2	-3	-1		

EVD Pro/Con

- Pro:
 - gives \(p \)-values for alignment scores

- Con:
 - it’s only approximate
 - parameter estimation
 - theory may not apply. E.g., it is NOT known to hold for gapped alignments (although empirically it seems to work pretty well).
Overall Alignment Significance, II
Empirical (via randomization)

• generate N random sequences (say N = 10^3 - 10^6)
• align x to each & score
• if k of them have better score than alignment of x to y, then the (empirical) probability of a chance alignment as good as observed x:y alignment is k/N

• How to generate “random” sequences?
 – Alignment scores often sensitive to sequence composition
 – so uniform 1/20 or 1/4 is a bad idea
 – even background p_i can be dangerous
 – Better idea: permute y N times

Generating Random Permutations

```c
for (i= n-1; i>0; i--)
  j = random(0..i);
swap X[i]<-> X[j];
```

Permutation Pro/Con

• Pro:
 – Gives empirical p-values for alignments with characteristics like sequence of interest, e.g. residue frequencies

• Con:
 – Can be inaccurate if your method of generating random sequences is unrepresentative
 – E.g., probably better to preserve di-, tri-residue statistics and/or other higher-order characteristics, but increasingly hard to know exactly what to model & how
 – Slow
 – Especially if you want to assess low-probability p-values

p-values & multiple testing

• Above give “p-values”: probability of a score more extreme than observed if the target sequence were random
• must be careful whether p-value means wrt comparison to one other random protein, or best of a database of n random proteins
• E.g., suppose p-value for x:y match is 10^{-3}, then you’d expect to see a score that good only one time in a thousand among non-homologous sequences
• Sounds good
• What if you found y by picking best match among 10^4 proteins?
• Sounds not so good
E-values

- "p-value": probability of a score more extreme than observed in a given random target data base
- E-value: expected number of matches that good or better in a random data base of the given size & composition
- Related: $P = 1 - \exp(-E)$
 - $E = 5 \leftrightarrow P = .993$
 - $E = 10 \leftrightarrow P = .99995$
 - $E = .01 \leftrightarrow P = E - E^2/2 + E^3/3! \ldots \approx E$
- both equally valid; E-value is perhaps a more intuitively interpretable quantity, & perhaps makes role of data base size more explicit

Issues

- What if the model is wrong?
- E.g., are adjacent positions really independent?

Summary

- BLAST is a highly successful search/alignment heuristic. It looks for alignments anchored by short, strong, ungapped "seed" alignments
- Assessing statistical significance of alignment scores is crucial to practical applications
 - score matrices derived from "likelihood ratio" test of trusted alignments vs random "null" model
 - for gapless alignments, Extreme Value Distribution (EVD) is theoretically justified for overall significance of alignment scores; empirically seems ok for gapped alignments, too
 - permutation tests are a simple (but brute force) alternative

Weekly Bio(tech) Interlude

2 Nobel Prizes:
- PCR: Kary Mullis, 1993
- DNA Sequencing: Frederick Sanger, 1980
PCR

1. 25°C
 - 5’ G A 3’
 - 3’ T C 5’

2. 95°C
 - 5’ A T A 3’
 - 3’ T T T 5’

3. 60°C
 - 5’ A T A 3’
 - 3’ T T T 5’

4. 72°C
 - 5’ A T A 3’
 - 3’ T T T 5’

5. 72°C
 - 5’ A T A 3’
 - 3’ T T T 5’

6. 72°C
 - 5’ A T A 3’
 - 3’ T T T 5’

Ingredients:
- many copies of deoxy nucleotide triphosphates
- many copies of two primer sequences (~20 nt each)
- readily synthesized
- many copies of Taq polymerase (*Thermus aquaticus*), readily available commercially
- as little as 1 strand of template DNA
- a programmable “thermal cycler”

Amplification: million to billion fold

Range: up to 2k bp routinely; 50k with other enzymes & care

Very widely used: forensics, archeology, cloning, sequencing, …

DNA Forensics

- E.g. FBI “CODIS” (combined DNA indexing system) database
- pick 13 short, variable regions of human genome
- amplify each from, e.g., small spot of dried blood
- measure product lengths (next slides)

PCR is important in that sample size is reduced from grams of tissue to a few cells
Gel Electrophoresis

- DNA/RNA backbone is negatively charged
- Molecules move slowly in gels under an electric field
 - agarose gels for large molecules
 - polyacrylamide gels for smaller ones
- Smaller molecules move faster
- So, you can separate DNAs & RNAs by size

DNA Sequencing

- Like one-cycle, one-primer PCR
- Suppose 0.1% of A’s:
 - are di-deoxy adenosine’s; backbone can’t extend
 - carry a green fluorescent dye
- Separate by capillary gel electrophoresis
- If frags of length 42, 49, 55 … glow green, those positions are A’s
- Ditto C’s (blue), G’s (yellow), T’s (red)
DNA Sequencing

- Highly automated
- Typically can "read" about 600 nt in one run
- "Whole Genome Shotgun" approach:
 - cut genome randomly into $\sim G / 600 \times 10$ fragments
 - sequence each
 - reassemble by computer

- Complications: repeated region, missed regions, sequencing errors, chimeric DNA fragments, …
- But overall accuracy $\sim 10^{-4}$, if careful

Summary

- PCR allows simple in vitro amplification of minute quantities of DNA (having pre-specified boundaries)
- Sanger sequencing uses
 - a PCR-like setup with modified chemistry to generate varying length prefixes of a DNA template with the last nucleotide of each color-coded
 - gel electrophoresis to separate DNA by size, giving sequence
- Sequencing random overlapping fragments allows genome sequencing