Today

- Admin
- Why Comp Bio?
- The world’s shortest Intro. to Mol. Bio.

He who asks is a fool for five minutes, but he who does not ask remains a fool forever.

-- Chinese Proverb

Admin Stuff
Course Mechanics & Grading

- Reading
- In class discussion
- Homeworks
 - reading
 - paper exercises
 - programming
- Project
- No exams

Background & Motivation

The Human Genome Project

```
1 gagccgcggc cggggaggcg cggcggaggcc cggcggggtc cggcgggggtc cggcgggggtc cggcgggggtc
61 gggcgggggtc cggcgggggtc cggcgggggtc cggcgggggtc cggcgggggtc cggcgggggtc cggcgggggtc
121 ctcctgctgct ggcctgctgct ggcctgctgct ggcctgctgct ggcctgctgct ggcctgctgct ggcctgctgct
181 ttcggtcggcc ttcggtcggcc ttcggtcggcc ttcggtcggcc ttcggtcggcc ttcggtcggcc ttcggtcggcc
241 gcggggtggc gcggggtggc gcggggtggc gcggggtggc gcggggtggc gcggggtggc gcggggtggc
301 cacgtctgct catcatctgtc catcatctgtc catcatctgtc catcatctgtc catcatctgtc catcatctgtc
361 ctcggtcggcc ttcggtcggcc ttcggtcggcc ttcggtcggcc ttcggtcggcc ttcggtcggcc ttcggtcggcc
421 ttttaggtcag ttttaggtcag ttttaggtcag ttttaggtcag ttttaggtcag ttttaggtcag ttttaggtcag
481 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
541 cggcgggggtc cggcgggggtc cggcgggggtc cggcgggggtc cggcgggggtc cggcgggggtc cggcgggggtc
601 ggggatttct ggggatttct ggggatttct ggggatttct ggggatttct ggggatttct ggggatttct
661 tcggggttgcc tgggggtggtc tgggggtggtc tgggggtggtc tgggggtggtc tgggggtggtc tgggggtggtc
721 cggcgggggtc cggcgggggtc cggcgggggtc cggcgggggtc cggcgggggtc cggcgggggtc cggcgggggtc
781 ttttaggtcag ttttaggtcag ttttaggtcag ttttaggtcag ttttaggtcag ttttaggtcag ttttaggtcag
841 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
```

Goals

- Basic biology
- Disease diagnosis/prognosis/treatment
- Drug discovery, validation & development
- Individualized medicine
- ...

High-Throughput BioTech

- Sensors
 - DNA sequencing
 - Microarrays/Gene expression
 - Mass Spectrometry/Proteomics
 - Protein/protein & DNA/protein interaction
- Controls
 - Cloning
 - Gene knock out/knock in
 - RNAi

Floods of data

“Grand Challenge” problems
What’s all the fuss?

• The human genome is “finished”…
• Even if it were, that’s only the beginning
• Explosive growth in biological data is revolutionizing biology & medicine

“All pre-genomic lab techniques are obsolete”
(and computation and mathematics are crucial to post-genomic analysis)

CS Points of Contact & Opportunities

• Scientific visualization
 – Gene expression patterns
• Databases
 – Integration of disparate, overlapping data sources
 – Distributed genome annotation in face of shifting underlying genomic coordinates
• AI/NLP/Text Mining
 – Information extraction from journal texts with inconsistent nomenclature, indirect interactions, incomplete/inaccurate models,…
• Machine learning
 – System level synthesis of cell behavior from low-level heterogeneous data (DNA sequence, gene expression, protein interaction, mass spec,…)
• …
• Algorithms

An Algorithm Example: ncRNAs

• The “Central Dogma”:
 DNA -> messenger RNA -> Protein
• Last ~5 years: many examples of functionally important ncRNAs
 – 175 -> 350 families just in last 6 mo.
• Much harder to find than protein-coding genes
• Main method - Covariance Models (based on stochastic context free grammars)
• Main problem - Sloooow … O(nm^4)

“Rigorous Filtering” - Z. Weinberg

• Convert CM to HMM
 (AKA: stochastic CFG to stochastic regular grammar)
• Do it so HMM score always >= CM score
• Optimize for most aggressive filtering subject to constraint that score bound maintained
 – A large convex optimization problem
• Filter genome sequence with (fast) HMM, run (slow) CM only on sequences above desired CM threshold; guaranteed not to miss anything
• Newer, more elaborate techniques using in key secondary structure features for better filtering
 (uses automata theory, dynamic programming, Dijkstra, more optimization stuff,…)

Details CENSORED
(Please see CS literature)
Results

- Typically 200-fold speedup or more
- Finding dozens to hundreds of new ncRNA genes in many families
- Has enabled discovery of many new families

- Newer, more elaborate techniques pulling in key secondary structure features for better searching
 (uses automata theory, dynamic programming, Dijkstra, more optimization stuff, …)

Course Focus & Goals

- Sequence analysis, maybe some microarrays
- Algorithms for alignment, search, & discovery
- Specific sequences, general types (“genes”, etc.)
- Single sequence and comparative analysis
- Techniques: HMMs, EM, MLE, Gibbs, Viterbi…
- Enough bio to motivate these problems, including very light intro to modern biotech supporting them
- Math/stats/cs underpinnings thereof
- Applied to real data
The Genome

- The hereditary info present in every cell
- DNA molecule -- a long sequence of nucleotides (A, C, T, G)
- Human genome -- about 3×10^{9} nucleotides
- The genome project -- extract & interpret genomic information, apply to genetics of disease, better understand evolution, …

DNA

- Discovered 1869
- Role as carrier of genetic information - much later
- The Double Helix - Watson & Crick 1953
- Complementarity
 - A \leftrightarrow T C \leftrightarrow G

Genetics - the study of heredity

- A gene -- classically, an abstract heritable attribute existing in variant forms (alleles)
- Genotype vs phenotype
- Mendel
 - Each individual two copies of each gene
 - Each parent contributes one (randomly)
 - Independent assortment
Cells

- Chemicals inside a sac - a fatty layer called the plasma membrane
- Prokaryotes (bacteria, archaea) - little recognizable substructure
- Eukaryotes (all multicellular organisms, and many single celled ones, like yeast) - genetic material in nucleus, other organelles for other specialized functions

Chromosomes

- 1 pair of (complementary) DNA molecules (+ protein wrapper)
- Most prokaryotes have just 1 chromosome
- Eukaryotes - all cells have same number of chromosomes, e.g. fruit flies 8, humans & bats 46, rhinoceros 84, …

Mitosis/Meiosis

- Most “higher” eukaryotes are diploid - have homologous pairs of chromosomes, one maternal, other paternal (exception: sex chromosomes)
- Mitosis - cell division, duplicate each chromosome, 1 copy to each daughter cell
- Meiosis - 2 divisions form 4 haploid gametes (egg/sperm)
 - Recombination/crossover -- exchange maternal/paternal segments

Proteins

- Chain of amino acids, of 20 kinds
- Proteins: the major functional elements in cells
 - Structural
 - Enzymes (catalyze chemical reactions)
 - Receptors (for hormones, other signaling molecules, odorants,…)
 - Transcription factors
 - …
- 3-D Structure is crucial: the protein folding problem
The “Central Dogma”

- Genes encode proteins
- DNA transcribed into messenger RNA
- mRNA translated into proteins
- Triplet code (codons)

Transcription: DNA → RNA

Translation: mRNA → Protein

Codons & The Genetic Code

<table>
<thead>
<tr>
<th>First Base</th>
<th>Second Base</th>
<th>Third Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Phe</td>
<td>Ser</td>
<td>Tyr</td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
<td>Stop</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>His</td>
</tr>
<tr>
<td>Ala</td>
<td>Thr</td>
<td>Ser</td>
</tr>
<tr>
<td>Met/Start</td>
<td>Thr</td>
<td>Lys</td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Asp</td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Asp</td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Glu</td>
</tr>
</tbody>
</table>

Ala : Alanine
Arg : Arginine
Asp : Asparagine
Asp : Aspartic acid
Cys : Cysteine
Gln : Glutamine
Glu : Glutamic acid
Gly : Glycine
His : Histidine
Ile : Isoleucine
Leu : Leucine
Lys : Lysine
Met : Methionine
Phe : Phenylalanine
Pro : Proline
Ser : Serine
Thr : Threonine
Trp : Tryptophan
Tyr : Tyrosine
Val : Valine
Ribosomes

Gene Structure

- Transcribed 5’ to 3’
- Promoter region and transcription factor binding sites (usually) precede 5’ end
- Transcribed region includes 5’ and 3’ untranslated regions
- In eukaryotes, most genes also include introns, spliced out before export from nucleus, hence before translation

Genome Sizes

<table>
<thead>
<tr>
<th>Organism</th>
<th>Base Pairs</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycoplasma genitalium</td>
<td>580,073</td>
<td>483</td>
</tr>
<tr>
<td>MimiVirus</td>
<td>1,200,000</td>
<td>1,260</td>
</tr>
<tr>
<td>E. coli</td>
<td>4,639,221</td>
<td>4,290</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>12,495,682</td>
<td>5,726</td>
</tr>
<tr>
<td>Caenorhabditis elegans</td>
<td>95,500,000</td>
<td>19,820</td>
</tr>
<tr>
<td>Arabidopsis thaliana</td>
<td>115,409,949</td>
<td>25,498</td>
</tr>
<tr>
<td>Drosophila melanogaster</td>
<td>122,653,977</td>
<td>13,472</td>
</tr>
<tr>
<td>Humans</td>
<td>3.3×10^8</td>
<td>~25,000</td>
</tr>
</tbody>
</table>

Genome Surprises

- Humans have < 1/3 as many genes as expected
- But perhaps more proteins than expected, due to alternative splicing
- There are unexpectedly many non-coding RNAs -- more than protein-coding genes, by some estimates
- Many other non-coding regions are highly conserved, e.g., across all vertebrates
… and much more …

• Read one of the many intro surveys or books for much more info.