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DNA Binding Proteins

• Job: to regulate transcription of DNA

• The DNA

– Phosphate backbone is uniform for the whole DNA molecule but there is a major
and minor groove

– Different chemical environment in the grooves depending on the base pairs at a
particular site

– base pairs especially exposed in the major groove

• Example: helix-turn-helix binding motif

– alpha helix then a turn then an alpha helix – forms a tertiary structure that fits
well in the major groove

– motif is seen frequently among DNA binding proteins

– often form dimers that can bind at multiple points on the helix – a single molecule
cannot target specifically because it can only be unique for a small number of base
pairs (such as just “AAGA”)

• Example: zinc finger motif

– zinc ion holds together a beta sheet and alpha helix which fits into the major
groove

– amino acids projecting from the alpha helix interact with the base pairs

• Example: leucine zipper motif

– homo-dimer – two identical proteins that form one functional dimer

– two long (separate) alpha helices with lots of leucine

– can mix and match apha helices to make heter-dimers with different affinities

• often interactions are formed via hydrogen bonding with the base pairs – all base pairs
of protruding alcohol or amine groups that can easily form H-bonds

• it is difficult to impossible to “predict” the DNA binding code because interactions
are not always straightforward – can inteact with various strands, and can assume
any number of positions along the DNA; additionally, the protein may undergo a
conformational change when binding the protein and may bend the DNA itself. Some
proteins interact with pieces of DNA far away from each other on the strand
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• Example: bacterial met repressor

– must be activated by SAM (S-adenosyl methionine, an important metabolite de-
rived from methionine) – causes a conformational change

– once activated, binds to the DNA and represses transcription of methionine syn-
thesis genes

– Thus, cell can regulate methionine/SAM production by downregulating its pro-
duction when the the pathway’s end product is more common

– Everything is ephemeral – all proteins eventually are degraded, can fall off or
reattach to the DNA; SAM molecules can attach and fall off the protein, etc. All
of biology is based on equilibrium conditions changing and many small events
being more or less probable.

• Example: the TATA box

– found in E. coli and other bacteria (especially Eubacteria)

– always found about 10 basepairs upstream from a transcription start

– Consensus sequence – TATAAT is the expected sequence, but approximate matches
are allowed because of general affinity of proteins for the nucleotides

– e.g. might be able to tolerate either pyrimidine (A or G) because they are struc-
turally similar to each other (both concentric rings)

– the farther away from TATAAT you get, the less likely it is that any given tran-
scription protein molecule will bind there – it is still possible and given the number
of proteins floating around, it will still happen, but not as often

– almost no perfect matches – how do we identify instances? how do we identify
consensus sequences?

– statistically make a table of frequencies of seeing a given letter in a given position
of a TATA box

– change these frequencies into scores (positive and negative) and sum over the
particular scores for a particular sequence – can get a score for every position on
the genome

– if you draw 6 random letters and score them according to the table, scores will
have some mean (and be very roughly normally distributed); if you draw from the
probability distrubution implied by the table, however, you’ll get a higher mean.

– statistics

∗ what is the probability of getting a sequence S if we assume that it arises
from the TATA box: P (S|“tata”)

∗ What is the probability of getting a sequence S if we don’t assume the TATA
box: P (S|“non-tata”)

∗ these can both be calculated fairly easily using basic frequencies

∗ the log of the ratio of these is used as the score
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∗ a score might be −∞; perhaps replace with some low value like −46? more
below

∗ the frequency counts per position is the maximum likelihood estimator for
the model (this is intuitive)

∗ Complication – DNA isn’t always evenly distributed in terms of base pairs,
thus the frequencies observed might actually be due to just normal DNA
sequences – this is why we have the denominator of the likelihood

∗ Information Theory

· Relative entropy – how much information is shared or not shared between
two variables

· entropy can be thought of as the amount of “space” necessary to store
something

· H(P ||Q) – relative entropy of P to Q

· if the information in P (x) exactly predicts the information in Q(x), then
the relative entropy is 0 (the distributions are identical)

· H(P ||Q) is the expected score from the model with P (x) as the prob. of
sequence x and Q(x) as the background prob. of sequence x

· −H(Q||P ) is the expected score from the DNA overall

∗ Can use a pseudocount to prevent the −∞ values – e.g. add 0.5 to each count
before finding log scores

• Given unaligned sequences thought to contain some motif, how do we find it?

– might have a set of upstream regions of known genes but not know what sequences
regulate those genes

– Idea: look for maximum relative entropy between the sequences. Unfortunately,
this is NP-hard; best we can afford to do (probably) is approximate it some how.
Three approaches to be presented

– Greedy approach

∗ k sequences, s1, s2, ...sk

∗ motif length is l; breadth is d

∗ start exhaustively enumerating subsets of length l subsequences

∗ compute relative entropy of each subset and throw away all but d best

∗ the larger d, the better it runs, but the slower it runs

– Expectation Maximization approach – like a hidden Markov model approach – we
have hidden data (motifs) and visible data (sequences), so try to find the motifs
that have the maximal expectation; iterate and home in on the right sequences.
Details next time.
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