
 1

CSE 527 10.2.06
Lecture 2 Justin Shaffer

Sequence Alignment – Part 1

Administrative Notes

• Homework 1 is due 10.9.06
• Possible programming languages to use for class

o R, Ruby, Python, C, C++, Java, Perl, MATLAB, Octave,…

People have been getting sequences since the 1950s

• Essential to computational biology
• Need to be searchable for comparison purposes

What is sequence similarity?

• Aligning two sequences by common nucleotides
• Can include spacers to make a better fit

Why is sequence alignment important?

• Can compare sequences to databases of sequences
o Similar sequences often have similar origin or function

• Selection and survival occurs at the system level, but mutations occur at the
sequence level

o Mutations in DNA can occur through chemical, radiation, or transcription
errors

• Recognizable similarity is noticeable after 108 to 109 years

Can use Genbank search to check sequences

• BLAST is a sequence comparison tool
• Can compare nucleotide or protein sequences or entire genomes for similarity
• http://www.ncbi.nlm.nih.gov/blast/

o lower case nucleotides may indicate uncertainty in sequence
o predicted sequences are determined by some algorithm
o taxonomic score gives the number of hits by taxonomy
o E-values start at 0.0 for near perfect matches

 For a given match, the E-value describes the expected number of
matches that you will find that are as good or better than the current
one, in a random data base of the same size.

• BLAST is useful because…
o Webserver
o Fast
o E-values give statistical significance of match

Sequence Terminology

• String – ordered list of letters
• Prefix – consecutive letters from front of string
• Suffix – consecutive letters from end of string

 2

• Substring – letters from end or middle
• Subsequence – ordered, nonaligned letters
• Alignment – of strings S and T is a pair of strings (with spaces) S’ and T’

o |S’| = |T’| = length of S

Alignment Scoring

• Mismatch (-1), Match (+2) [For examples on slides, only.]
• The score of aligning two sequences S and T is σ(S, T)
• The value of an alignment is the sum of all of the scores of the strings S’ and T’

from one to |S’| -- BIG assumption, e.g. assumes adjacent positions independent
• The optimal alignment is the one that results in the maximum alignment score

o Bonuses for correct alignment, penalties for mistakes
• Scoring amino acid sequence alignment can be difficult

o Scores can be based on side chains
o Reflects chemical/physical properties of amino acids

Where do scores come from?

• Develop an algorithm to compare sequences and tabulate maximal score
• Simple method

o For all subsequences A of S and B of T, set |A| = |B|
o Align A(i) = B(i) for 1 <= I <= |A|
o Align all other characters to spaces
o Compute values
o Retain the max alignment

• Assume n = |S| = |T|
o Cost of evaluation of one alignment is 2n
o Polynomial versus exponential growth

 22n hits wall really fast
 run time grows with stiffness

Example: Fibonacci Numbers

• Uses a simple recursion loop, but results in a huge number of cycles
(subproblems)

o Values at n – 1 and n – 2 is calculated for every cycle
o Time = Ω(1.61n)

• Can use dynamic programming to greatly speed up run time
o By using a table or array, values from each iteration can be stored into

memory and thus do not need to be calculated every cycle
 Time = O(n)

What is the optimal substructure to use for determining alignment?

• The optimal alignment ends in one of three ways…
o Last character of S and T are aligned to each other
o Last character of S is aligned with a spacer in T
o Last character of T is aligned with a spacer in S
o Never align spacer with spacer (σ(--,--) < 0)

 3

• In each case, the remainder of S and T should be optimally aligned to each other
• The optimal alignment can be accomplished in O(n2) time by using dynamic

programming
o Input: S and T, |S| = n and |T| = m
o Output: value of optimal alignment

• It is easier to solve a “harder” problem
o V(i,j) = value of optimal alignment of S[1], S[2], … , S[i] with T[1]…T[j]
o Etc, etc…

Recursion

• See powerpoint notes for example of how to use the following algorithm
o / V(i-1,j-1) + σ(S[i],T[j])
o V(i,j) = max | V(i-1,j) + σ(S[i],--)
o \ V(i,j-1) + σ(--,T[j]) for all 1 <= I <= n, 1 <= j <= m

• fill in the entries row by row or column by column in order to fill in the entire table
o S is for rows
o T is for columns

• The time to run this algorithm will be O(m*n)
• The goal is to find the n x m entry of the table

o This will tell you the score of the overall best match, but not what the
match is!

o To find out what the best match is, trace back in the table to the 1 x 1
entry

Complexity Notes

• Time = O(m*n)
• Physical space = O(m*n)
• Practical to use this algorithm for small values of m and n

o Space can be more of a limitation than time (there’s a more complex
algorithm that reduces space to O(max(m,n)), still in O(mn) time).

Part II – Variations in Sequence Alignment

• Local alignment
o Preceding algorithm gives global alignment (uses the full length of both

strings)
o This method might well miss strong similarity of the middle of the strings

• Gap penalties
o Some worth more than others
o Gaps are correlated

• Better to lose 3n nucleotides than any other number
• 3 nucleotides per codon

More on these variants next lecture.

