
CSE 527: Computational Biology Assignment #3
Turn this one in on paper; handwritten is fine, I don’t recommend trying to typeset it. Extra

credit is for extra practice and glory; it is not a big component of your grade.

1. Bayes Rule: In a certain population, an obese person has a 30 percent chance of having
high blood pressure and a non-obese person has a 10 percent chance of having high blood
pressure. Twenty percent of the population is obese. What is the conditional probability that
a person is obese, given that the person has high blood pressure?

2. Maximum Likelihood: Let x1, x2, . . . , xn be n samples of a normal random variable X
with mean θ1 and variance θ2. In class I showed that the maximum likelihood estimates of
θ1 and θ2 when both are unknown give a biased estimate of θ2. What is the MLE of θ2 = σ2

if θ1 = µ is assumed to be known?

For example, suppose I draw a sample of 3 measuring 9, 10 , 11. The sample mean is 10,
sample standard deviation is

√
((9− 10)2 + (10− 10)2 + (11− 10)2)/3 =

√
2/3 ≈ .8.

On the other hand suppose I told you the population mean was 0. Drawing a sample of 9,
10, 11 now seems much less likely, but is certainly still possible, and is made more probable
by increasing our estimate of the population variance (the sample variance is unchanged; it’s
defined in terms of the sample mean, not the population mean). So the question is: now
that I know the population mean, what estimate of population variance make the data I just
observed most likely?

Extra Credit: Is your estimate of θ2 biased, i.e., does the expected value of θ̂2 differ from θ2?

3. EM: In class, I sketched the EM algorithm for the two-component Gaussian Mixture Model
only in the special case when both subpopulations were assumed to share the same variance
and the mixing proportions (τ1/τ2) were assumed to be 50/50. Carry out the analysis for the
general case where σ2

1, σ
2
2 and 0 ≤ τ1 ≤ 1 (τ2 = 1− τ1) are arbitrary.

4. Maximum Likelihood: Suppose X is a discrete random variable with three possible out-
comes, say A1, A2 and A3. Let θ = (p1, p2, p3) be the probabilities of outcomes A1, A2, A3,
resp., (where p1 + p2 + p3 = 1, of course). Suppose you have collected n independent ran-
dom samples x1, x2, . . . , xn drawn from this distribution. Using the same basic approach as
in the coin-flipping example in the class notes (Lecute 6, slide 8), show that the maximum
likelihood estimators for the parameters θ are θ̂ = (n1/n, n2/n, n3/n), where ni is the number
of occurrences of outcome Ai among x1, x2, . . . , xn. Hint: The three variables are coupled,
since p3 = 1 − p1 − p2. The algebra is mildly easier if you happen to remember Lagrange
multipliers, but it’s absolutely not essential; just substitute for p3 using the identity before
you differentiate. (FYI, this result generalizes to arbitrary multinomial distributions, not just
2 or 3 outcomes; see the slick proof in Chapter 11.)

5. EM: Recall that an allele of a gene is one variant of its DNA or protein sequence. Individuals
generally carry two (possibly identical) alleles of each gene, one inherited from mother, one
from father (genes on the X/Y chromosomes being exceptions). The ABO blood type gene has
three common alleles in the human population: A, B and O. The blood type of an individual
depends as follows on the pair of alleles that he or she has: type A if the pair is A/A or A/O;
type B if the pair is B/B or B/O; type AB if the pair is A/B; type O if the pair is O/O. Let
p(A) be the fraction of A alleles in the population, p(B), the fraction of B alleles and p(O),
the fraction of O alleles. These fractions are nonnegative and sum to 1. Under the standard
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assumption in genetics of independent assortment, the probability that an individual has a
given pair of alleles is the same as the probability of obtaining that pair in two random draws
from the set of all alleles in the population: for example, the probability of the pair A/B is
2p(A)p(B). In a sample of 20 individuals, the first 9 have blood type A, the next 2 have blood
type B, the next has blood type AB and the last 8 have blood type O. Derive the appropriate
formulas needed to use the EM algorithm to determine the values of p(A), p(B) and p(O)
most likely to have given rise to this data. Then run the algorithm for a few iterations on
the given data. Try it with a couple of very different starting estimates for the parameters.
You may write a program to do the iteration, do it by hand, or give a spreadsheet with the
relevant formulas and “fill down” a few rows to iterate. If you use a spreadsheet, turn in a
printout of the formulas as well as the numbers; I think CONTROL-backquote causes Excel
to show all formulas. Hint: The parameters are p(A), p(B) and p(O), the observed data are
the blood types of the individuals and the hidden data are the pairs of alleles possessed by the
individuals. The solution to problem 4 will help. Depending on how you set up the likelihood
function, you might (or might not) need the multinomial distribution from pg 300 of the text.

(If you’d like info on the genetics of the ABO blood group sys-
tem, the 1930 Nobel prize in Physiology or Medicine, have a look at
Wikipedia http://en.wikipedia.org/wiki/Abo_blood_group or OMIM
http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=110300. In a nutshell, they are
3 alleles of a single gene on the ninth chromosome (9q34), which encodes a glycosyltrans-
ferase—an enzyme that modifies the carbohydrate content of the red blood cell antigens. The
A and B alleles perform slightly (but immunologically significantly) different modifications;
the O allele has a 1 base deletion, hence an altered reading frame, producing a very different
protein with no apparent function at all, a so-called “null” allele, more or less explaining
why the O allele is “silent.” Aside from issues with blood transfusions, people with O blood
type are apparently more susceptible to cholera. And, no, the “independent assortment”
assumption for this gene is not well justified in the human population; prevalence is strongly
dependent on geography. But we’ll ignore that for this problem...)

Extra Credit Problems:

6. Maximum Likelihood: Suppose X is a random variable uniformly distributed between 0
and θ > 0 for some unknown θ. Based on a sample x1, x2, . . . , xn of X, what is the maximum
likelihood estimator of θ? Is it biased?

7. EM: Generalize the EM algorithm from problem 3 to allow a fixed but arbitrary number
k ≥ 1 of components in the mixture, preferably allowing a choice of either a common variance
σ2 shared by all clusters, or a separate variance per cluster. Implement it and experiment
with simulated data to see how well it recovers the parameters you used to generate the data.
How quickly does the iteration converge? Does it ever seem to be converging to a local,
not global, max? How well does it work with sparse data? Well-separated clusters? Highly
overlapping clusters?

8. Motif Finding: Pick 10–20 genes from one prokaryotic organism, say E. coli, and run one
of the motif finding tools we’ve discussed (MEME, Align-ace, ...) on the 200 base-pair region
upstream of each. Does it find anything interesting, perhaps a TATA box? Repeat with 10–20
human genes. For a somewhat more ambitious exercise, try Footprinter on 10–20 orthologous
genes.

2


