More Motifs

WMM, log odds scores, Neyman-Pearson, background; Greedy & EM for motif discovery

Neyman-Pearson

- Given a sample $x_1, x_2, ..., x_n$, from a distribution $f(...|\Theta)$ with parameter Θ , want to test hypothesis $\Theta = \theta_1$ vs $\Theta = \theta_2$.
- Might as well look at likelihood ratio:

$$\frac{f(x_1, x_2, ..., x_n | \theta_1)}{f(x_1, x_2, ..., x_n | \theta_2)} > \tau$$

What's best WMM?

- Given 20 sequences $s_1, s_2, ..., s_k$ of length 8, assumed to be generated at random according to a WMM defined by 8 x (4-1) parameters θ , what's the best θ ?
- E.g., what MLE for θ given data $s_1, s_2, ..., s_k$?
- Answer: count frequencies per position.

Weight Matrix Models

8 Sequences:

ATG

ATG

ATG

ATG

ATG

GTG

GTG

TTG

Log-Likelihood Ratio:

$$\log_2 \frac{f_{x_i,i}}{f_{x_i}}, \ f_{x_i} = \frac{1}{4}$$

Freq.	Col I	Col 2	Col3
Α	.625	0	0
С	0	0	0
G	.250	0	I
Т	.125	I	0

LLR	Col I	Col 2	Col 3
Α	1.32	8	-8
С	-8	-8	-8
G	0	-8	2.00
Т	-1.00	2.00	-∞

Non-uniform Background

- E. coli DNA approximately 25% A, C, G, T
- M. jannaschi 68% A-T, 32% G-C

LLR from previous example, assuming

$$f_A = f_T = 3/8$$

 $f_C = f_G = 1/8$

LLR	Col I	Col 2	Col 3
Α	.74	-8	8
С	-8	-8	-8
G	1.00	-∞	3.00
Т	-1.58	1.42	-∞

e.g., G in col 3 is 8 x more likely via WMM than background, so (log_2) score = 3 (bits).

WMM: How "Informative"? Mean score of site vs bkg?

- For any fixed length sequence x, let P(x) = Prob. of x according to WMMQ(x) = Prob. of x according to background
- Recall Relative Entropy:

$$H(P||Q) = \sum_{x \in \Omega} P(x) \log_2 \frac{P(x)}{Q(x)}$$

 H(P||Q) is expected log likelihood score of a sequence randomly chosen from WMM;
 -H(Q||P) is expected score of Background For WMM, you can show (based on the assumption of independence between columns), that:

$$H(P||Q) = \sum_{i} H(P_i||Q_i)$$

where P_i and Q_i are the WMM/background distributions for column i.

WMM Example, cont.

Freq.	Col I	Col 2	Col3
Α	.625	0	0
С	0	0	0
G	.250	0	I
Т	.125	I	0

Uniform

LLR	Col	Col 2	Col 3	
Α	1.32	-8	8	
C	-8	-8	-8	
G	0	-8	2.00	
T	-1.00	2.00	-8	
RelEnt	.70	2.00	2.00	4.70

Non-uniform

LLR	Col I	Col 2	Col 3	
Α	.74	-∞	-∞	
С	-8	-∞	-∞	
G	1.00	-∞	3.00	
Т	-1.58	1.42	-∞	
RelEnt	.51	1.42	3.00	4.9

Pseudocounts

- Are the $-\infty$'s a problem?
 - Certain that a given residue never occurs in a given position? Then -∞ just right
 - Else, it may be a small-sample artifact
- Typical fix: add a pseudocount to each observed count—small constant (e.g., .5, I)
- Sounds ad hoc; there is a Bayesian justification

How-to Questions

- Given aligned motif instances, build model?
 - Frequency counts (above, maybe with pseudocounts)
- Given a model, find (probable) instances?
 - Scanning, as above
- Given unaligned strings thought to contain a motif, find it? (e.g., upstream regions for coexpressed genes from a microarray experiment)
 - Hard... next few lectures.

Motif Discovery: 3 example approaches

- Greedy search
- Expectation Maximization
- Gibbs sampler

Note: finding a site of max relative entropy in a set of unaligned sequences is NP-hard (Akutsu)

Greedy Best-First Approach [Hertz & Stormo]

Input:

• Sequence $s_1, s_2, ..., s_k$; motif length l; "breadth" d

Algorithm:

- create singleton set with each length l subsequence of each $s_1, s_2, ..., s_k$
- for each set, add each possible length I subsequence not already present
- compute relative entropy of each
- discard all but d best
- repeat until all have k sequences

Expectation Maximization [MEME, Bailey & Elkan, 1995]

Input (as above):

• Sequence $s_1, s_2, ..., s_k$; motif length l; background model; again assume one instance per sequence (variants possible)

Algorithm: EM

- Visible data: the sequences
- Hidden data: where's the motif

$$Y_{i,j} = \begin{cases} 1 & \text{if motif in sequence } i \text{ begins at position } j \\ 0 & \text{otherwise} \end{cases}$$

• Parameters θ : The WMM

MEME Outline

Typical EM algorithm:

- Given parameters θ^t at t^{th} iteration, use them to estimate where the motif instances are (the hidden variables)
- Use those estimates to re-estimate the parameters θ to maximize likelihood of observed data, giving θ^{t+1}
- Repeat

Expectation Step

(where are the motif instances?)

$$\widehat{Y}_{i,j} = E(Y_{i,j} \mid s_i, \theta^t) \xrightarrow{E^{(0)}} P^{(0)} \xrightarrow{P^{(0)}} P^{(1)}$$

$$= P(Y_{i,j} = 1 \mid s_i, \theta^t) \xrightarrow{P(Y_{i,j} = 1 \mid \theta^t)} P^{(1)} \xrightarrow{P^{(0)}} P^{(1)} \xrightarrow{P^{(0)}} P^{(1)} \xrightarrow{P^{(0)}} P^{(0)} P^{(0)} P^{(0)} \xrightarrow{P^{(0)}} P^{(0)} P^{(0)$$

where c' is chosen so that $\sum_{i} \hat{Y}_{i,j} = 1$.

Maximization Step

(what is the motif?)

Find θ maximizing expected value:

$$Q(\theta \mid \theta^{t}) = E_{Y \sim \theta^{t}} [\log P(s, Y \mid \theta)]$$

$$= E_{Y \sim \theta^{t}} [\log \prod_{i=1}^{k} P(s_{i}, Y_{i} \mid \theta)]$$

$$= E_{Y \sim \theta^{t}} [\sum_{i=1}^{k} \log P(s_{i}, Y_{i} \mid \theta)]$$

$$= E_{Y \sim \theta^{t}} [\sum_{i=1}^{k} \sum_{j=1}^{|s_{i}|-l+1} Y_{i,j} \log P(s_{i}, Y_{i,j} = 1 \mid \theta)]$$

$$= E_{Y \sim \theta^{t}} [\sum_{i=1}^{k} \sum_{j=1}^{|s_{i}|-l+1} Y_{i,j} \log(P(s_{i} \mid Y_{i,j} = 1, \theta) P(Y_{i,j} = 1 \mid \theta))]$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{|s_{i}|-l+1} E_{Y \sim \theta^{t}} [Y_{i,j}] \log P(s_{i} \mid Y_{i,j} = 1, \theta) + C$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{|s_{i}|-l+1} \widehat{Y}_{i,j} \log P(s_{i} \mid Y_{i,j} = 1, \theta) + C$$

M-Step (cont.)

$$Q(\theta \mid \theta^t) = \sum_{i=1}^k \sum_{j=1}^{|s_i|-l+1} \widehat{Y}_{i,j} \log P(s_i \mid Y_{i,j} = 1, \theta) + C$$

Exercise: Show this is maximized by "counting" letter frequencies over all possible motif instances, with counts weighted by $\widehat{Y}_{i,j}$, again the "obvious" thing.

 $s_1:$ ACGGATT... $s_k:$ GC...TCGGAC $\widehat{Y}_{1,1}$ ACGG $\widehat{Y}_{1,2}$ CGGA $\widehat{Y}_{1,3}$ GGAT \vdots \vdots $\widehat{Y}_{k,l-1}$ CGGA $\widehat{Y}_{k,l}$ GGAC

Initialization

- I. Try every motif-length substring, and use as initial θ a WMM with, say 80% of weight on that sequence, rest uniform
- 2. Run a few iterations of each
- 3. Run best few to convergence

(Having a supercomputer helps)