
More Motifs
WMM, log odds scores, Neyman-Pearson, background;

Greedy & EM for motif discovery



Neyman-Pearson

• Given a sample x1, x2, ..., xn, from a 
distribution f(...|Θ) with parameter Θ, want 
to test hypothesis Θ = θ1 vs Θ = θ2.

• Might as well look at likelihood ratio:

    f(x1, x2, ..., xn|θ1) 
    f(x1, x2, ..., xn|θ2) 

>  τ



What’s best WMM?

• Given 20 sequences s1, s2, ..., sk of length 8, 
assumed to be generated at random 
according to a WMM defined by 8 x (4-1) 
parameters θ, what’s the best θ?

• E.g., what MLE for θ given data s1, s2, ..., sk?

• Answer: count frequencies per position.



ATG
ATG
ATG
ATG
ATG
GTG
GTG
TTG

Freq.  Col 1 Col 2 Col3
A .625 0 0
C 0 0 0
G .250 0 1
T .125 1 0

LLR  Col 1 Col 2 Col 3
A 1.32 -∞ -∞
C -∞ -∞ -∞
G 0 -∞ 2.00
T -1.00 2.00 -∞

Weight Matrix Models

log2
fxi,i

fxi

, fxi =
1
4

8 Sequences:

Log-Likelihood Ratio:



• E. coli - DNA approximately 25%  A, C, G, T

• M. jannaschi - 68% A-T,  32% G-C

LLR from previous 
example, assuming

e.g., G in col 3 is 8 x more likely via WMM 
than background, so (log2) score = 3 (bits).

LLR  Col 1 Col 2 Col 3
A   .74 -∞ -∞
C -∞ -∞ -∞
G  1.00 -∞ 3.00
T -1.58 1.42 -∞

Non-uniform 
Background

fA = fT = 3/8
fC = fG = 1/8



WMM: How “Informative”?
Mean score of site vs bkg?
• For any fixed length sequence x, let

P(x)  = Prob. of x according to WMM
Q(x) = Prob. of x according to background

• Recall Relative Entropy:

• H(P||Q) is expected log likelihood score of a  
sequence randomly chosen from WMM; 
-H(Q||P) is expected score of Background

H(P ||Q) =
∑
x∈Ω

P (x) log2
P (x)
Q(x)

H(P||Q)-H(Q||P)



For WMM, you can show (based on the 
assumption of independence between 
columns), that :

where Pi and Qi are the WMM/background 
distributions for column i.

H(P ||Q) =
∑

i H(Pi||Qi)



Freq.  Col 1 Col 2 Col3
A .625 0 0
C 0 0 0
G .250 0 1
T .125 1 0

LLR  Col 1 Col 2 Col 3
A  1.32 -∞ -∞
C -∞ -∞ -∞
G 0 -∞ 2.00
T -1.00 2.00 -∞

RelEnt   .70 2.00 2.00 4.70

LLR  Col 1 Col 2 Col 3
A   .74 -∞ -∞
C -∞ -∞ -∞
G  1.00 -∞ 3.00
T -1.58 1.42 -∞

RelEnt    .51 1.42 3.00 4.93

WMM Example, cont.

Uniform Non-uniform



Pseudocounts

• Are the -∞’s a problem?
• Certain that a given residue never occurs 

in a given position?  Then -∞ just right

• Else, it may be a small-sample artifact

• Typical fix: add a pseudocount to each 
observed count—small constant (e.g., .5, 1) 

• Sounds ad hoc; there is a Bayesian justification



How-to Questions

• Given aligned motif instances, build model?
• Frequency counts (above, maybe with pseudocounts)

• Given a model, find (probable) instances?
• Scanning, as above

• Given unaligned strings thought to contain a 
motif, find it?  (e.g., upstream regions for co-
expressed genes from a microarray experiment)

• Hard... next few lectures.



Motif Discovery: 
3 example approaches
• Greedy search

• Expectation Maximization

• Gibbs sampler

Note: finding a site of max relative entropy 
in a set of unaligned sequences is NP-hard 
(Akutsu)



Greedy Best-First Approach
[Hertz & Stormo]

Input:
• Sequence s1, s2, ..., sk; motif length I; “breadth” d

Algorithm:
• create singleton set with each length l 

subsequence of each s1, s2, ..., sk

• for each set, add each possible length l 
subsequence not already present

• compute relative entropy of each
• discard all but d best
• repeat until all have k sequences us
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Yi,j =
{

1 if motif in sequence i begins at position j
0 otherwise

Expectation Maximization 
[MEME, Bailey & Elkan, 1995]

Input (as above):

• Sequence s1, s2, ..., sk; motif length l; background 
model; again assume one instance per sequence 
(variants possible)

Algorithm: EM

• Visible data: the sequences

• Hidden data: where’s the motif

• Parameters θ: The WMM



MEME Outline
Typical EM algorithm:

• Given parameters θt at tth iteration,  use 
them to estimate where the motif instances 
are (the hidden variables)

• Use those estimates to re-estimate the 
parameters θ to maximize likelihood of 
observed data, giving θt+1

• Repeat



Ŷi,j = E(Yi,j | si, θt)

= P (Yi,j = 1 | si, θt)

= P (si | Yi,j = 1, θt)P (Yi,j=1|θt)
P (si|θt)

= cP (si | Yi,j = 1, θt)

= c′
∏l

k=1 P (si,j+k−1 | θt)

where c′ is chosen so that
∑

j Ŷi,j = 1.

E = 0 · P (0) + 1 · P (1)

Baye
s

1 3 5 7 9 11 ...

Sequence i

Ŷi,j

Expectation Step
(where are the motif instances?)



Q(θ | θt) = EY ∼θt [log P (s, Y | θ)]

= EY ∼θt [log
∏k

i=1 P (si, Yi | θ)]

= EY ∼θt [
∑k

i=1 log P (si, Yi | θ)]

= EY ∼θt [
∑k

i=1

∑|si|−l+1
j=1 Yi,j log P (si, Yi,j = 1 | θ)]

= EY ∼θt [
∑k

i=1

∑|si|−l+1
j=1 Yi,j log(P (si | Yi,j = 1, θ)P (Yi,j = 1 | θ))]

=
∑k

i=1

∑|si|−l+1
j=1 EY ∼θt [Yi,j ] log P (si | Yi,j = 1, θ) + C

=
∑k

i=1

∑|si|−l+1
j=1 Ŷi,j log P (si | Yi,j = 1, θ) + C

Maximization Step
(what is the motif?)

Find θ maximizing expected value:



Exercise: Show this is 
maximized by “counting” 
letter frequencies over 
all possible motif 
instances, with counts 
weighted by      , again 
the “obvious” thing.

M-Step (cont.)
Q(θ | θt) =

∑k
i=1

∑|si|−l+1
j=1 Ŷi,j log P (si | Yi,j = 1, θ) + C

Ŷi,j

s1 : ACGGATT. . .
. . .

sk : GC. . . TCGGAC

Ŷ1,1 ACGG
Ŷ1,2 CGGA
Ŷ1,3 GGAT

...
...

Ŷk,l−1 CGGA
Ŷk,l GGAC



Initialization

1. Try every motif-length substring, and use as 
initial θ a WMM with, say 80% of weight on 
that sequence, rest uniform

2. Run a few iterations of each

3. Run best few to convergence

(Having a supercomputer helps)


