## More Motifs

WMM, log odds scores, Neyman-Pearson, background;
Greedy \& EM for motif discovery

## Neyman-Pearson

- Given a sample $x_{1}, x_{2}, \ldots, x_{n}$, from a distribution $f(\ldots . \mid \Theta)$ with parameter $\Theta$, want to test hypothesis $\Theta=\theta_{1}$ vs $\Theta=\theta_{2}$.
- Might as well look at likelihood ratio:

$$
\frac{f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}\right)}{f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{2}\right)}>\tau
$$

## What's best WMM?

- Given 20 sequences $s_{1}, s_{2}, \ldots, s_{k}$ of length 8 , assumed to be generated at random according to a WMM defined by $8 \times(4-I)$ parameters $\theta$, what's the best $\theta$ ?
- E.g., what MLE for $\theta$ given data $s_{\mathrm{l}}, s_{2}, \ldots, s_{\mathrm{k}}$ ?
- Answer: count frequencies per position.


## Weight Matrix Models

8 Sequences:
ATG
ATG
ATG
ATG
ATG
GTG
GTG
TTG
Log-Likelihood Ratio:

$$
\log _{2} \frac{f_{x_{i}, i}}{f_{x_{i}}}, f_{x_{i}}=\frac{1}{4}
$$

| Freq. | Col I | Col 2 | Col3 |
| :---: | :---: | :---: | :---: |
| A | .625 | 0 | 0 |
| C | 0 | 0 | 0 |
| G | .250 | 0 | I |
| T | .125 | I | 0 |


| LLR | Col I | Col 2 | Col 3 |
| :---: | :---: | :---: | :---: |
| A | 1.32 | $-\infty$ | $-\infty$ |
| C | $-\infty$ | $-\infty$ | $-\infty$ |
| G | 0 | $-\infty$ | 2.00 |
| T | -1.00 | 2.00 | $-\infty$ |

## Non-uniform Background

- E. coli - DNA approximately $25 \% \mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$
- M. jannaschi - 68\% A-T, 32\% G-C

LLR from previous example, assuming

$$
\begin{aligned}
& f_{A}=f_{T}=3 / 8 \\
& f_{C}=f_{G}=1 / 8
\end{aligned}
$$

| LLR | Col I | Col 2 | Col 3 |
| :---: | :---: | :---: | :---: |
| A | .74 | $-\infty$ | $-\infty$ |
| C | $-\infty$ | $-\infty$ | $-\infty$ |
| G | 1.00 | $-\infty$ | 3.00 |
| T | -1.58 | 1.42 | $-\infty$ |

e.g., G in col 3 is $8 \times$ more likely via WMM than background, so ( $\log _{2}$ ) score $=3$ (bits).

## WMM: How "Informative"? Mean score of site vs bkg?

- For any fixed length sequence $x$, let
$P(x)=$ Prob. of $x$ according to WMM
$Q(x)=$ Prob. of $x$ according to background
- Recall Relative Entropy:

$$
H(P \| Q)=\sum_{x \in \Omega} P(x) \log _{2} \frac{P(x)}{Q(x)}
$$



- $H(P \| Q)$ is expected log likelihood score of a sequence randomly chosen from WMM; $-H(Q \| P)$ is expected score of Background

For WMM, you can show (based on the assumption of independence between columns), that :

$$
H(P \| Q)=\sum_{i} H\left(P_{i} \| Q_{i}\right)
$$

where $P_{i}$ and $Q_{i}$ are the WMM/background distributions for column i.

## WMM Example, cont.

| Freq. | Col I | Col 2 | Col3 |
| :---: | :---: | :---: | :---: |
| A | .625 | 0 | 0 |
| C | 0 | 0 | 0 |
| G | .250 | 0 | I |
| T | .125 | I | 0 |


| Uniform |
| :--- |
| LLR Col I Col Col 3 <br> A 1.32 $-\infty$ $-\infty$ <br> C $-\infty$ $-\infty$ $-\infty$ <br> G 0 $-\infty$ 2.00 <br> T -1.00 2.00 $-\infty$ <br> RelEnt .70 2.00 2.00 |

Non-uniform

| LLR | Col I | Col 2 | Col 3 |
| :---: | :---: | :---: | :---: |
| A | .74 | $-\infty$ | $-\infty$ |
| C | $-\infty$ | $-\infty$ | $-\infty$ |
| G | 1.00 | $-\infty$ | 3.00 |
| T | -1.58 | 1.42 | $-\infty$ |
| RelEnt | .51 | 1.42 | 3.00 |

## Pseudocounts

- Are the $-\infty$ 's a problem?
- Certain that a given residue never occurs in a given position? Then $-\infty$ just right
- Else, it may be a small-sample artifact
- Typical fix: add a pseudocount to each observed count-small constant (e.g., .5, I)
- Sounds ad hoc; there is a Bayesian justification


## How-to Questions

- Given aligned motif instances, build model?
- Frequency counts (above, maybe with pseudocounts)
- Given a model, find (probable) instances?
- Scanning, as above
- Given unaligned strings thought to contain a motif, find it? (e.g., upstream regions for coexpressed genes from a microarray experiment)
- Hard... next few lectures.


## Motif Discovery: 3 example approaches

- Greedy search
- Expectation Maximization
- Gibbs sampler

Note: finding a site of max relative entropy in a set of unaligned sequences is NP-hard (Akutsu)

## Greedy Best-First Approach

 [Hertz \& Stormo]Input:

- Sequence $s_{l}, s_{2}, \ldots, s_{k}$; motif length I;"breadth" d Algorithm:
- create singleton set with each length I subsequence of each $s_{1}, s_{2}, \ldots, s_{k}$
- for each set, add each possible length I subsequence not already present
- compute relative entropy of each
- discard all but $d$ best
- repeat until all have $k$ sequences


## Expectation Maximization [MEME, Bailey \& Elkan, 1995]

Input (as above):

- Sequence $s_{1}, s_{2}, \ldots, s_{k}$; motif length $l$; background model; again assume one instance per sequence (variants possible)
Algorithm: EM
- Visible data: the sequences
- Hidden data: where's the motif

$$
Y_{i, j}= \begin{cases}1 & \text { if motif in sequence } i \text { begins at position } j \\ 0 & \text { otherwise }\end{cases}
$$

- Parameters $\theta$ : The WMM


## MEME Outline

Typical EM algorithm:

- Given parameters $\theta^{t}$ at $t^{\text {th }}$ iteration, use them to estimate where the motif instances are (the hidden variables)
- Use those estimates to re-estimate the parameters $\theta$ to maximize likelihood of observed data, giving $\theta^{t+l}$
- Repeat


## Expectation Step

(where are the motif instances?)

$$
\begin{aligned}
\widehat{Y}_{i, j} & =E\left(Y_{i, j} \mid s_{i}, \theta^{t}\right) \longrightarrow P\left(Y_{i, j}=1 \mid s_{i}, \theta^{t}\right) \\
& =P\left(s_{i} \mid Y_{i, j}=1, \theta^{t}\right) \frac{P\left(Y_{i, j}=1 \mid \theta^{t}\right)}{P\left(s_{i} \mid \theta^{t}\right)} \\
& =c P\left(s_{i} \mid Y_{i, j}=1, \theta^{t}\right) \\
& =c^{\prime} \prod_{k=1}^{l} P\left(s_{i, j+k-1} \mid \theta^{t}\right)
\end{aligned}
$$

where $c^{\prime}$ is chosen so that $\sum_{j} \widehat{Y}_{i, j}=1$.

I 3579 II ... Sequence i

## Maximization Step (what is the motif?)

Find $\theta$ maximizing expected value:

$$
\begin{aligned}
Q\left(\theta \mid \theta^{t}\right) & =E_{Y \sim \theta^{t}}[\log P(s, Y \mid \theta)] \\
& =E_{Y \sim \theta^{t}}\left[\log \prod_{i=1}^{k} P\left(s_{i}, Y_{i} \mid \theta\right)\right] \\
& =E_{Y \sim \theta^{t}}\left[\sum_{i=1}^{k} \log P\left(s_{i}, Y_{i} \mid \theta\right)\right] \\
& =E_{Y \sim \theta^{t}}\left[\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} Y_{i, j} \log P\left(s_{i}, Y_{i, j}=1 \mid \theta\right)\right] \\
& =E_{Y \sim \theta^{t}}\left[\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} Y_{i, j} \log \left(P\left(s_{i} \mid Y_{i, j}=1, \theta\right) P\left(Y_{i, j}=1 \mid \theta\right)\right)\right] \\
& =\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} E_{Y \sim \theta^{t}}\left[Y_{i, j}\right] \log P\left(s_{i} \mid Y_{i, j}=1, \theta\right)+C \\
& =\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} \widehat{Y}_{i, j} \log P\left(s_{i} \mid Y_{i, j}=1, \theta\right)+C
\end{aligned}
$$

$$
\begin{gathered}
\text { M-Step (cont.) } \\
Q\left(\theta \mid \theta^{t}\right)=\sum_{i=1}^{k} \sum_{j=1}^{|s| 1|l| l \mid} \widehat{Y}_{i, j} \log P\left(s_{i} \mid Y_{i, j}=1, \theta\right)+C
\end{gathered}
$$

Exercise: Show this is maximized by "counting" letter frequencies over all possible motif instances, with counts weighted by $\widehat{Y}_{i, j}$, again the "obvious" thing.
$s_{1}:$ ACGGATT...
$s_{k}:$ GC...TCGGAC

| $\widehat{Y}_{1,1}$ | ACGG |
| :---: | :---: |
| $\widehat{Y}_{1,2}$ | CGGA |
| $\widehat{Y}_{1,3}$ | GGAT |
| $\vdots$ | $\vdots$ |
| $\widehat{Y}_{k, l-1}$ | CGGA |
| $\widehat{Y}_{k, l}$ | GGAC |

## Initialization

I. Try every motif-length substring, and use as initial $\theta$ a WMM with, say $80 \%$ of weight on that sequence, rest uniform
2. Run a few iterations of each
3. Run best few to convergence
(Having a supercomputer helps)

