More Motifs

WMM, log odds scores, Neyman-Pearson, background;
Greedy & EM for motif discovery




Neyman-Pearson

Given a sample x, x,, .., x , from a

distribution f{(...|®) with parameter O, want
to test hypothesis © = 6, vs © = 0,.

Might as well look at likelihood ratio:

2316
f(x,, x5 ... x |05)




What’s best YWWMM?

e Given 20 sequences s,,s,, .., s, of length 8,

assumed to be generated at random
according to a WMM defined by 8 x (4-1)
parameters 0, what’s the best 0?

e E.g,what MLE for O given data s,s,, ..., s !

® Answer: count frequencies per position.




Weight Matrix Models

8 Sequences:

ATG
ATG
ATG
ATG
ATG
GTG
GTG
TTG

fmiai

1Og2 f—a

Log-Likelihood Ratio:
f:cz- —

1

4

Freq. | Col | | Col 2 | Col3
A .625 0 0
C 0 0 0
G .250 0 I
T 125 I 0

LLR | Col || Col2 | Col 3
A .32 -0 -0
C -0 -0 -0
G 0 -0 2.00
T -1.00 | 2.00 -0




Non-uniform

Background

® £ coli- DNA approximately 25% A, C, G, T
® M. jannaschi - 68% A-T, 32% G-C

LLR from previous
example, assuming

fa=fr=23/8
fc=fa=1/8

LLR | Col | | Col2 | Col 3
A 74 - 00 - 00
C -0 -00 -00
G .00 -00 3.00
T -1.58 | 1.42 -00

e.g., G in col 3 is 8 x more likely via VMM
than background, so (log,) score = 3 (bits).




WMM: How “Informative”
Mean score of site vs bkg?

® For any fixed length sequence x, let
P(x) = Prob. of x according to VMM
Q(x) = Prob. of x according to background

® Recall Relative Entropy: / B(
H(P||Q) = ZP ) log, Pla) B \

Q()

el HQIP)  HP|IQ)

® H(P||Q) is expected log likelihood score of a
sequence randomly chosen from WMM,;
-H(Q||P) is expected score of Background




For WMM, you can show (based on the
assumption of independence between

columns), that :

H(PI|IQ) = 2. H(P|Q:)
where P. and Q; are the WMM/background

distributions for column i.




VWMM Example, cont.

Freq. | Col | | Col 2 | Col3

A 625 0 0

C 0 0 0

G 250 0 I

T 125 I 0

Uniform Non-uniform

LLR | Col |[Col 2|{Col 3 LLR | Col | [Col 2|Col 3
A .32 | -© | - A J4 | -© | -
C -0 -0 -0 C -0 -0 -0
G 0 - | 2.00 G .00 [ - | 3.00
T |-1.00[200| -x T -1.58 | 1.42 | -
RelEnt| .70 | 2.00 | 2.00 | 4.70 RelEnt Sl | 1.42 ] 3.00 14.93




Pseudocounts

® Are the —00’s a problem?

® Certain that a given residue never occurs
in a given position! Then —00 just right

® Flse, it may be a small-sample artifact

® Typical fix: add a pseudocount to each
observed count—small constant (e.g., .5, |)

® Sounds ad hoc; there is a Bayesian justification




How-to Questions

® Given alighed motif instances, build model?

* Frequency counts (above, maybe with pseudocounts)

® Given a model, find (probable) instances!?

* Scanning, as above

® Given unaligned strings thought to contain a

motif, find it! (e.g., upstream regions for co-
expressed genes from a microarray experiment)

 Hard... next few lectures.




Motif Discovery:
3 example approaches

® Greedy search
® Expectation Maximization
® Gibbs sampler

Note: finding a site of max relative entropy

in a set of unaligned sequences is NP-hard
(Akutsu)




Greedy Best-First Approach

[Hertz & Stormo]

Input:
 Sequence s, s,, .., §,; motif length [;“breadth™ d

Algorlthm

create singleton set with each length |
subsequence of each s, s,, .., 5,

* for each set, add each possible length |
subsequence not already present

* compute relative entropy of each
* discard all but d best
* repeat until all have k sequences

usual “ereedy” problems
g Y P




Expectation Maximization
[MEME, Bailey & Elkan, 1995]

Input (as above):
e Sequences,s,, .., s,; motif length ; background

model; again assume one instance per sequence
(variants possible)

Algorithm: EM
* Visible data: the sequences

* Hidden data: where’s the motif
1 if motif in sequence 7 begins at position j
}/jiaj — 3
0 otherwise

* Parameters : The WMM




MEME Outline

Typical EM algorithm:

® Given parameters 0! at t! iteration, use
them to estimate where the motif instances
are (the hidden variables)

® Use those estimates to re-estimate the
parameters O to maximize likelihood of

observed data, giving 0"/

® Repeat




Expectation Step

(where are the motif instances?)

X'PKX\
~ Q'P&Q\k
Yij = E(i;|si,0) /’V
> 23/
— P(E’]:lysz’et) /%
P(Y;, ;=1|0"
= P(s;|Yi; =1,0) (P(sz-lﬁtl) ) :
p— CP(Sz ’ E’] — 1,9t) 17i,j
l L
=TTy P(sijen—1 | 09) AL

where ¢’ is chosen so that ) |, Y; ; = 1.  Sedwencel




Maximization Step
(what is the motif?)

Find O maximizing expected value:

QO]6Y) = Ey.gllogP(s,Y | 0)]

= By~p[log[l;_, P(s:,Y: | 0))

= FEy.p _Zk log P(s;,Y; | 0)]

= Bype[Yr, S0HY S log P(si, Yy =11 6))

= By (Y, Y log(P(si | Yig = 1,0)P(Y;; =11 0))]
= Y, YT By g Vi ] log P(s; | Vi =1,0)+ C

= Yk 12'8' 1Y, log P(s; | Y, =1,0)+C




M-Step (cont.)

QO |6t = }j%1§j“'l+1y*1ogfw&|1gj_.19) C

Exercise: Show this is s1: ACGGATT...
maximized by “counting”

, s GC... TCGGAC
letter frequencies over

all possible motif Y, ACGG
instances, with counts Y12 CGGA
weighted b)’ i}i,j, again YT,S GG.AT
the “obvious” thing. K ;
Yii—1  CGGA

Ve GGAC




Initialization

|. Try every motif-length substring, and use as
initial © a WMM with, say 80% of weight on
that sequence, rest uniform

2. Run a few iterations of each
3. Run best few to convergence

(Having a supercomputer helps)




