More Motifs

WMM, log odds scores, Neyman-Pearson, background; Greedy & EM for motif discovery

What's best WMM?

- Given 20 sequences $s_1, s_2, ..., s_k$ of length 8, assumed to be generated at random according to a WMM defined by 8 x (4-1) parameters θ , what's the best θ ?
- E.g., what MLE for θ given data $s_1, s_2, ..., s_k$?
- Answer: count frequencies per position.

Neyman-Pearson

- Given a sample x₁, x₂, ..., x_n, from a distribution f(...|Θ) with parameter Θ, want to test hypothesis Θ = θ₁ vs Θ = θ₂.
- Might as well look at likelihood ratio:

$$\frac{f(x_{1}, x_{2}, ..., x_{n} | \theta_{1})}{f(x_{1}, x_{2}, ..., x_{n} | \theta_{2})} > \tau$$

Weight Matrix Models

8 Sequences:

ATC	
ATG	
GTG	
GTG	
TTG	

Log-Likelihood Ratio:

 $\log_2 \frac{f_{x_i,i}}{f_{x_i}}, \ f_{x_i} = \frac{1}{4}$

Col I	Col 2	Col3
.625	0	0
0	0	0
.250	0	I
.125	I	0
	.625 0 .250	.625000.2500

LLR	Col I	Col 2	Col 3
Α	1.32	-8	8
С	-∞	-∞	-8
G	0	-∞	2.00
Т	-1.00	2.00	-8

Non-uniform Background

• E. coli - DNA approximately 25% A, C, G, T

• M. jannaschi - 68% A-T, 32% G-C

LLR from previous example, assum

LK Ironi previous	LLR	Col I	Col 2	Col 3
xample, assuming	Α	.74	-8	-8
	С	-∞	-8	-8
$f_A = f_T = 3/8$	G	1.00	-8	3.00
$f_C = f_G = 1/8$	Т	-1.58	1.42	-∞

e.g., G in col 3 is 8 x more likely via WMM than background, so (log_2) score = 3 (bits).

WMM: How "Informative"? Mean score of site vs bkg?

- For any fixed length sequence x, let P(x) = Prob. of x according to WMMQ(x) = Prob. of x according to background
- Recall Relative Entropy:

$$H(P||Q) = \sum_{x \in \Omega} P(x) \log_2 \frac{P(x)}{Q(x)}$$

• H(P||Q) is expected log likelihood score of a sequence randomly chosen from WMM; -H(Q||P) is expected score of Background

For WMM, you can show (based on the assumption of independence between columns), that :

 $H(P||Q) = \sum_{i} H(P_i||Q_i)$

where P_i and Q_i are the WMM/background distributions for column i.

WMM Example, cont.

Freq.	Col I	Col 2	Col3
Α	.625	0	0
С	0	0	0
G	.250	0	I
Т	.125	_	0

Uniform				
LR.	Col I	Col 2	Col 3	
А	1.32	-8	-8	
С	-∞	-∞	-8	
G	0	-∞	2.00	
Т	-1.00	2.00	-8	

.70

RelEnt

2.00 2.00

Non-uniform				
LLR	Col I	Col 2	Col 3	
Α	.74	-8	-8	
С	-∞	-8	-8	
G	1.00	-∞	3.00	
Т	-1.58	1.42	-8	
RelEnt	.51	1.42	3.00	4.93

Pseudocounts

- Are the $-\infty$'s a problem?
 - Certain that a given residue never occurs in a given position? Then -∞ just right
 - Else, it may be a small-sample artifact
- Typical fix: add a *pseudocount* to each observed count—small constant (e.g., .5, I)
- Sounds ad hoc; there is a Bayesian justification

How-to Questions

- Given aligned motif instances, build model?
 - Frequency counts (above, maybe with pseudocounts)
- Given a model, find (probable) instances?
 - Scanning, as above
- Given unaligned strings thought to contain a motif, find it? (e.g., upstream regions for co-expressed genes from a microarray experiment)
 - Hard... next few lectures.

Motif Discovery: 3 example approaches

- Greedy search
- Expectation Maximization
- Gibbs sampler

Note: finding a site of max relative entropy in a set of unaligned sequences is NP-hard (Akutsu)

Greedy Best-First Approach [Hertz & Stormo]

Input:

• Sequence $s_1, s_2, ..., s_k$; motif length *l*; "breadth" *d* Algorithm: problems

"greedy"

usual

- create singleton set with each length *l* subsequence of each s₁, s₂, ..., s_k
- for each set, add each possible length *l* subsequence not already present
- compute relative entropy of each
- discard all but d best
- repeat until all have k sequences

Expectation Maximization [MEME, Bailey & Elkan, 1995]

Input (as above):

 Sequence s₁, s₂, ..., s_k; motif length *l*; background model; again assume one instance per sequence (variants possible)

Algorithm: EM

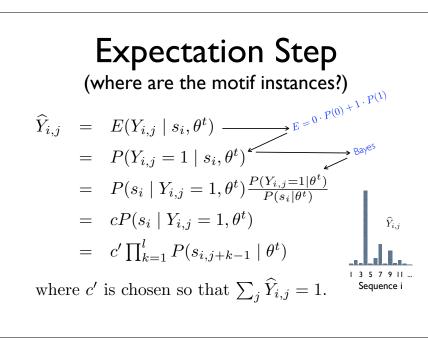
- Visible data: the sequences
- Hidden data: where's the motif

$$Y_{i,j} = \begin{cases} 1 & \text{if motif in sequence } i \text{ begins at position } j \\ 0 & \text{otherwise} \end{cases}$$

MEME Outline

Typical EM algorithm:

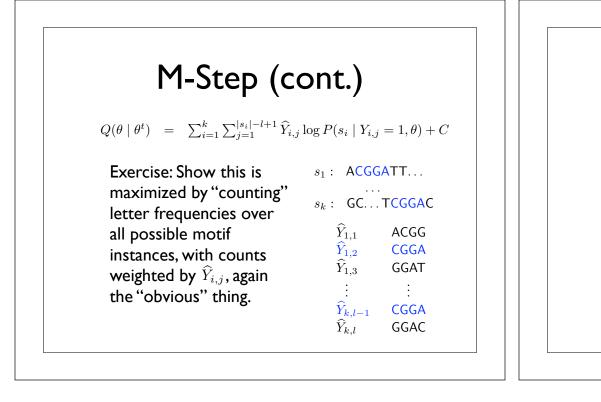
- Given parameters θ^t at t^{th} iteration, use them to estimate where the motif instances are (the hidden variables)
- Use those estimates to re-estimate the parameters θ to maximize likelihood of observed data, giving θ^{t+1}
- Repeat



$\begin{array}{l} \textbf{Maximization Step}\\ \textbf{(what is the motif?)}\\ \textbf{Find } \theta \textbf{ maximizing expected value:}\\ Q(\theta \mid \theta^t) &= E_{Y \sim \theta^t} [\log P(s, Y \mid \theta)]\\ &= E_{Y \sim \theta^t} [\log \prod_{i=1}^k P(s_i, Y_i \mid \theta)]\\ &= E_{Y \sim \theta^t} [\sum_{i=1}^k \log P(s_i, Y_i \mid \theta)]\\ &= E_{Y \sim \theta^t} [\sum_{i=1}^k \sum_{j=1}^{|s_i| - l + 1} Y_{i,j} \log P(s_i, Y_{i,j} = 1 \mid \theta)]\\ &= E_{Y \sim \theta^t} [\sum_{i=1}^k \sum_{j=1}^{|s_i| - l + 1} Y_{i,j} \log (P(s_i \mid Y_{i,j} = 1, \theta) P(Y_{i,j} = 1 \mid \theta))]\\ &= E_{Y \sim \theta^t} [\sum_{i=1}^k \sum_{j=1}^{|s_i| - l + 1} Y_{i,j} \log (P(s_i \mid Y_{i,j} = 1, \theta) P(Y_{i,j} = 1 \mid \theta))] \end{array}$

 $= \sum_{i=1}^{k} \sum_{j=1}^{|s_i|-l+1} E_{Y \sim \theta^t}[Y_{i,j}] \log P(s_i \mid Y_{i,j} = 1, \theta) + C$

$$= \sum_{i=1}^{k} \sum_{j=1}^{|s_i|-l+1} \widehat{Y}_{i,j} \log P(s_i \mid Y_{i,j} = 1, \theta) + C$$



Initialization

- 1. Try every motif-length substring, and use as initial θ a WMM with, say 80% of weight on that sequence, rest uniform
- 2. Run a few iterations of each
- 3. Run best few to convergence

(Having a supercomputer helps)