More Motifs

WMM, log odds scores, Neyman-Pearson, background; Greedy \& EM for motif discovery

Neyman-Pearson

- Given a sample $x_{1}, x_{2}, \ldots, x_{n}$, from a distribution $f(\ldots \mid \Theta)$ with parameter Θ, want to test hypothesis $\Theta=\theta_{1}$ vs $\Theta=\theta_{2}$.
- Might as well look at likelihood ratio:

$$
\frac{f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}\right)}{f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{2}\right)}>\tau
$$

Weight Matrix Models

8 Sequences:
ATG
ATG
ATG
ATG
ATG
GTG
GTG
TTG
Log-Likelihood Ratio:

$$
\log _{2} \frac{f_{x_{i}, i}}{f_{x_{i}}}, f_{x_{i}}=\frac{1}{4}
$$

Freq.	Col I	Col 2	Col3
A	.625	0	0
C	0	0	0
G	.250	0	I
T	.125	I	0

- E.g., what MLE for θ given data $s_{1}, s_{2}, \ldots, s_{k}$?
- Answer: count frequencies per position.

Non-uniform Background

- E. coli - DNA approximately 25% A, C, G,T
- M. jannaschi - 68\% A-T, 32\% G-C

LLR from previous example, assuming
$f_{A}=f_{T}=3 / 8$
$f_{C}=f_{G}=1 / 8$

LLR	Col I	Col 2	Col 3
A	.74	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	I.00	$-\infty$	3.00
T	-1.58	1.42	$-\infty$

e.g., G in col 3 is $8 \times$ more likely via WMM than background, so $\left(\log _{2}\right)$ score $=3$ (bits).

WMM: How "Informative"?
 Mean score of site vs bkg?

- For any fixed length sequence x, let $P(x)=$ Prob. of x according to WMM
$Q(x)=$ Prob. of x according to background
- Recall Relative Entropy:

$$
H(P \| Q)=\sum_{x \in \Omega} P(x) \log _{2} \frac{P(x)}{Q(x)}
$$

- $H(P \| Q)$ is expected log likelihood score of a sequence randomly chosen from WMM;
$-H(Q \| P)$ is expected score of Background

WMM Example, cont.

For WMM, you can show (based on the assumption of independence between columns), that :

$$
H(P \| Q)=\sum_{i} H\left(P_{i} \| Q_{i}\right)
$$

where P_{i} and Q_{i} are the WMM/background distributions for column i.

Freq.	Col I	Col 2	Col3
A	.625	0	0
C	0	0	0
G	.250	0	I
T	. I 25	I	0

Uniform

LLR	Col I	Col 2	Col 3
A	1.32	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	0	$-\infty$	2.00
T	-1.00	2.00	$-\infty$
RelEnt	.70	2.00	2.00

Non-uniform			
LLR	Col I	Col 2	Col 3
A	.74	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	1.00	$-\infty$	3.00
T	-1.58	1.42	$-\infty$
RelEnt	.51	1.42	3.00

Pseudocounts

- Are the $-\infty$'s a problem?
- Certain that a given residue never occurs in a given position? Then $-\infty$ just right
- Else, it may be a small-sample artifact
- Typical fix: add a pseudocount to each observed count-small constant (e.g., .5, I)
- Sounds ad hoc; there is a Bayesian justification

Motif Discovery: 3 example approaches

- Greedy search
- Expectation Maximization
- Gibbs sampler

Note: finding a site of max relative entropy in a set of unaligned sequences is NP-hard (Akutsu)

How-to Questions

- Given aligned motif instances, build model?
- Frequency counts (above, maybe with pseudocounts)
- Given a model, find (probable) instances?
- Scanning, as above
- Given unaligned strings thought to contain a motif, find it? (e.g., upstream regions for coexpressed genes from a microarray experiment)
- Hard... next few lectures.

Greedy Best-First Approach

[Hertz \& Stormo]

Input:

- Sequence $s_{1}, s_{2}, \ldots, s_{k}$; motif length I;"breadth"d

Algorithm:

- create singleton set with each length I subsequence of each $s_{1}, s_{2}, \ldots, s_{k}$
- for each set, add each possible length I subsequence not already present
- compute relative entropy of each
- discard all but d best
- repeat until all have k sequences

Expectation Maximization

[MEME, Bailey \& Elkan, 1995]
Input (as above):

- Sequence $s_{l}, s_{2}, \ldots, s_{k}$; motif length l; background model; again assume one instance per sequence (variants possible)
Algorithm: EM
- Visible data: the sequences
- Hidden data: where's the motif
$Y_{i, j}= \begin{cases}1 & \text { if motif in sequence } i \text { begins at position } j \\ 0 & \text { otherwise }\end{cases}$
- Parameters θ : The WMM

MEME Outline

Typical EM algorithm:

- Given parameters θ^{t} at $t^{t h}$ iteration, use them to estimate where the motif instances are (the hidden variables)
- Use those estimates to re-estimate the parameters θ to maximize likelihood of observed data, giving θ^{t+1}
- Repeat

Maximization Step

(what is the motif?)
Find θ maximizing expected value:

```
Q(0|\mp@subsup{0}{}{t})=\mp@subsup{E}{Y~0&}{[log}P(s,Y|0)]
    = EY~0t[log}\mp@subsup{\prod}{i=1}{k}P(\mp@subsup{s}{i}{\prime},\mp@subsup{Y}{i}{}|0)
```



```
    = \sum \sumi=1
```


M-Step (cont.)

$$
Q\left(\theta \mid \theta^{t}\right)=\sum_{i=1}^{k} \sum_{j=1}^{\left|s_{i}\right|-l+1} \widehat{Y}_{i, j} \log P\left(s_{i} \mid Y_{i, j}=1, \theta\right)+C
$$

Exercise: Show this is maximized by "counting" letter frequencies over all possible motif instances, with counts weighted by $\widehat{Y}_{i, j}$, again the "obvious" thing.
s_{1} : ACGGATT...
s_{k} : GC....TCGGAC
$\widehat{Y}_{1,1} \quad$ ACGG
$\widehat{Y}_{1,2} \quad$ CGGA
$\widehat{Y}_{1,3} \quad$ GGAT

Initialization

I. Try every motif-length substring, and use as initial θ a WMM with, say 80% of weight on that sequence, rest uniform
2. Run a few iterations of each
3. Run best few to convergence (Having a supercomputer helps)

