Model-based clustering and data transformations of gene expression data

Walter L. Ruzzo
University of Washington

Overview
- Motivation
- Model-based clustering
- Validation
- Summary and Conclusions

Toy 2-d Clustering Example

K-Means
Overview

- Motivation
- Model-based clustering
- Validation
- Summary and Conclusions

Model-based clustering

- Gaussian mixture model:
 - Assume each cluster is generated by a multivariate normal distribution
 - Cluster k has parameters:
 - Mean vector: μ_k
 - Covariance matrix: Σ_k
Model-based clustering

- Gaussian mixture model:
 - Assume each cluster is generated by a multivariate normal distribution
 - Cluster k has parameters:
 - Mean vector: \(\mu_k \)
 - Covariance matrix: \(\Sigma_k \)

Gaussian Distributions

- Univariate
 \[
 f(x) = \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{1}{2}(x-\mu)^2/\sigma^2}
 \]

- Multivariate
 \[
 f(x) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)}
 \]
 where \(\Sigma \) is the variance/covariance matrix:
 \[
 \Sigma_{i,j} = E((x_i - \bar{x}_i)(x_j - \bar{x}_j))
 \]

Variance & Covariance

- Variance
 \[
 \text{var}(x) = E((x - \bar{x})^2) = \sigma_x^2
 \]

- Covariance
 \[
 \text{cov}(x, y) = E((x - \bar{x})(y - \bar{y}))
 \]

- Correlation
 \[
 \text{cor}(x, y) = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y}
 \]
Covariance models
(Banfield & Raftery 1993)

• Equal volume spherical model (EI): $\sim k$means
 $\Sigma_k = \lambda_k I$

• Unequal volume spherical (VI):
 $\Sigma_k = \lambda_k I$

Diagonal model:
$\Sigma_k = \lambda_k B_k$, where B_k is diagonal, $|B_k| = 1$

• EEE elliptical model:
 $\Sigma_k = \lambda_k D_k A_k D_k^T$

• Unconstrained model (VVV):
 $\Sigma_k = \lambda_k D_k A_k D_k^T$

EM algorithm

• General approach to maximum likelihood
• Iterate between E and M steps:
 – E step: compute the probability of each observation belonging to each cluster using the current parameter estimates
 – M-step: estimate model parameters using the current group membership probabilities
Advantages of model-based clustering

- Higher quality clusters
- Flexible models
- Model selection – A principled way to choose right model and right # of clusters
 - Bayesian Information Criterion (BIC):
 - Approximate Bayes factor: posterior odds for one model against another model
 - Roughly: data likelihood, penalized for number of parameters
 - A large BIC score indicates strong evidence for the corresponding model.

Definition of the BIC score

\[2 \log p(D | M_k) = 2 \log p(D | \hat{\theta}_k, M_k) - \nu_k \log(n) = BIC_k \]

- The integrated likelihood \(p(D | M_k) \) is hard to evaluate, where \(D \) is the data, \(M_k \) is the model.
- BIC is an approximation to \(\log p(D | M_k) \)
- \(\nu_k \): number of parameters to be estimated in model \(M_k \)

Overview

- Motivation
- Model-based clustering
- Validation
 - Methodology
 - Data Sets
 - Results
- Summary and Conclusions

Validation Methodology

- Compare on data sets with external criteria (BIC scores do not require the external criteria)
- To compare clusters with external criterion:
 - Adjusted Rand index (Hubert and Arabie 1985)
 - Adjusted Rand index = 1 → perfect agreement
 - 2 random partitions have an expected index of 0
- Compare quality of clusters to those from:
 - a leading heuristic-based algorithm: CAST (Ben-Dor & Yakhini 1999)
 - k-Means (EI).
Gene expression data sets

- Ovarian cancer data set (Michel Schummer, Institute of Systems Biology)
 - Subset of data: 235 clones
 - 24 experiments (cancer/normal tissue samples)
 - 235 clones correspond to 4 genes
- Yeast cell cycle data (Cho et al. 1998)
 - 17 time points
 - Subset of 384 genes associated with 5 phases of cell cycle

Synthetic data sets

Both based on ovary data
- Randomly resampled ovary data
 - For each class, randomly sample the expression levels in each experiment, independently
 - Near diagonal covariance matrix
- Gaussian mixture
 - Generate multivariate normal distributions with the sample covariance matrix and mean vector of each class in the ovary data

Results: randomly resampled ovary data

- Diagonal model achieves max BIC score (~expected)
- max BIC at 4 clusters (~expected)
- max adjusted Rand
- beats CAST

Results: square root ovary data

- Adjusted Rand: max at EEE 4 clusters (> CAST)
- BIC analysis:
 - EEE and diagonal models → local max at 4 clusters
 - Global max → VI at 8 clusters (8 ≈ split of 4).
Results: standardized yeast cell cycle data

- Adjusted Rand: EI slightly > CAST at 5 clusters.
- BIC: selects EEE at 5 clusters.

Overview

- Motivation
- Model-based clustering
- Validation
 - Importance of Data Transformation
- Summary and Conclusions
Overview

• Motivation
• Model-based clustering
• Validation
• Summary and Conclusions

Summary and Conclusions

• Synthetic data sets:
 – With the correct model, model-based clustering better than a leading heuristic clustering algorithm
 – BIC selects the right model & right number of clusters
• Real expression data sets:
 – Comparable adjusted Rand indices to CAST
 – BIC gives a good hint as to the number of clusters
• Appropriate data transformations increase normality & cluster quality (See paper & web.)
Acknowledgements

- Ka Yee Yeung¹, Chris Fraley²,⁴, Alejandro Murua⁴, Adrian E. Raftery²
- Michèl Schummer⁵ – the ovary data
- Jeremy Tantrum² – help with MBC software (diagonal model)
- Chris Saunders³ – CRE & noise model

¹Computer Science & Engineering ²Statistics ³Genome Sciences
⁴Insightful Corporation ⁵Institute of Systems Biology

More Info
http://www.cs.washington.edu/homes/ruzzo

Adjusted Rand Example

<table>
<thead>
<tr>
<th></th>
<th>c#1(4)</th>
<th>c#2(5)</th>
<th>c#3(7)</th>
<th>c#4(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>class#1(2)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>class#2(3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>class#3(5)</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>class#4(10)</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

\[a = \binom{3}{2} \cdot \binom{4}{2} \cdot \binom{4}{2} \cdot \binom{7}{2} = 31 \]
\[b = \binom{4}{2} \cdot \binom{4}{2} \cdot \binom{4}{2} \cdot \binom{7}{2} = 31 \]
\[c = \binom{2}{2} \cdot \binom{5}{2} \cdot \binom{10}{2} = 59 \]
\[d = \binom{20}{2} = 119 \]

Rand, \(R = \frac{a + d}{a + d + c + d} = 0.789 \)

Adjusted Rand, \(\frac{R - E(R)}{1 - E(R)} = 0.469 \)