

CpG Islands

- CpG Islands
- More CpG than elsewhere
- More C \& G than elsewhere, too
- Typical length: few 100 to few 1000 bp
- Questions
- Given short sequence (say 200 bp), is it a CpG island or not?
- Given long sequence (say, $10-100 \mathrm{~kb}$), find CpG islands in it?

Markov Chains

A sequence x_{1}, x_{2}, \ldots of random variables is a k-th order Markov chain if, for all i:
$P\left(x_{i} \mid x_{1}, x_{2}, \ldots, x_{i-1}\right)=P\left(x_{i} \mid x_{i-k}, x_{i-k+1}, \ldots, x_{i-1}\right)$
i.e., ${ }^{\text {th }}$ value is independent of all but the previous k values

- Example I: Uniform random ACGT
- Example 2:Weight matrix model $\}_{\text {Oth }}^{\text {order }}$
- Example 3:ACGT, but $\downarrow \operatorname{Pr}(\mathrm{G}$ following C$)\} \begin{aligned} & \text { Ist } \\ & \text { orde }\end{aligned}$

A Markov Model (Ist order)

States:
A,C,G,T
Emissions: corresponding letter
Transitions: $a_{s t}=P\left(x_{i}=t \mid x_{i-1}=s\right)$
Begin/End states

Pr of emitting sequence x

$$
\begin{aligned}
x & =x_{1} x_{2} \ldots x_{n} \\
P(x) & =P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =P\left(x_{1}\right) \cdot P\left(x_{2} \mid x_{1}\right) \cdots P\left(x_{n} \mid x_{n-1}, \ldots, x_{1}\right) \\
& =P\left(x_{1}\right) \cdot P\left(x_{2} \mid x_{1}\right) \cdots P\left(x_{n} \mid x_{n-1}\right) \\
& =P\left(x_{1}\right) \prod_{i=1}^{n-1} a_{x_{i}, x_{i+1}} \\
& =\prod_{i=0}^{n-1} a_{x_{i}, x_{i+1}} \quad \text { (with Begin state) }
\end{aligned}
$$

Training

Max likelihood estimates for transition probabilities are just the frequencies of transitions when emitting the training sequences
E.g., from 48 CpG islands in 60 kbp :

$+$	A	C	G	T	-	A	C	G	T
A	0.180	0.274	0.426	0.120	A	0.300	0.205	0.285	0.210
C	0.171	0.368	0.274	0.188	C	0.322	0.298	0.078	0.302
G	0.161	0.339	0.375	0.125	G	0.248	0.246	0.298	0.208
T	0.079	0.355	0.384	0.182	T	0.177	0.239	0.292	0.292

Discrimination/ Classification

Log likelihood ratio of CpG model vs background model

$$
\begin{aligned}
& S(x)=\log \frac{P(x \mid \text { model }+)}{P(x \mid \text { model }-)}=\sum_{i=1}^{L} \log \frac{a_{x_{i-1} x_{i}}^{+}}{a_{x_{i-1} x_{i}}^{-}}=\sum_{i=1}^{L} \beta_{x_{i-1} x_{i}} \\
& \qquad \begin{array}{rcccc}
\beta & \mathrm{A} & \mathrm{C} & \mathrm{G} & \mathrm{~T} \\
\hline \mathrm{~A} & -0.740 & 0.419 & 0.580 & -0.803 \\
\mathrm{C} & -0.913 & 0.302 & 1.812 & -0.685 \\
\mathrm{G} & -0.624 & 0.461 & 0.331 & -0.730 \\
\mathrm{~T} & -1.169 & 0.573 * & 0.393 & -0.679
\end{array}
\end{aligned}
$$

Figure 3.2 The histogram of the length-normalised scores for all the sequences. CpG islands are shown with dark grey and non-CpG with light grey.

Questions

QI: Given a short sequence, is it more likely from feature model or background model? Above
Q2: Given a long sequence, where are the features in it (if any)

- Approach I: score 100 bp (e.g.) windows
- Pro: simple
- Con: arbitrary, fixed length, inflexible
- Approach 2: combine +/- models.

Combined Model

Emphasis is "Which hidden state(s)?" not "Which model?"

The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped

233121625364414432335163243633665562466662632666612355245242 FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Figure 3.5 The numbers show 300 rolls of a die as described in the example. Below is shown which die was actually used for that roll (F for fair and L for loaded). Under that the prediction by the Viterbi algorithm is shown.

Inferring hidden stuff

Joint probability of a given path $\pi \&$ emission sequence x :

$$
P(x, \pi)=a_{0, \pi_{1}} \prod_{i=1}^{n} e_{\pi_{i}}\left(x_{i}\right) \cdot a_{\pi_{i}, \pi_{i+1}}
$$

But π is hidden; what to do? Some alternatives:
I. Most probable single path

$$
\pi^{*}=\arg \max _{\pi} P(x, \pi)
$$

2. Sequence of most probable states

$$
\hat{\pi}_{i}=\arg \max _{k} P\left(\pi_{i}=k \mid x\right)
$$

3. ...

The Viterbi Algorithm: The most probable path

- Viterbi finds: $\pi^{*}=\arg \max _{\pi} P(x, \pi)$
- Possibly there are 10^{99} paths of prob 10^{-99}
- More commonly, one path dominates others. (If not, other approaches may be preferable.)
- Key problem: exponentially many paths π

Unrolling an HMM

- Conceptually, sometimes convenient
- Note exponentially many paths

Viterbi

$v_{l}(i)=$ probability of the most probable path emitting $x_{1}, x_{2}, \ldots, x_{i}$ and ending in state l

$$
v_{l}(i+1)=e_{l}\left(x_{i+1}\right) \cdot \max _{k}\left(v_{k}(i) a_{k, l}\right)
$$

Initialize:
$v_{l}(0)= \begin{cases}1 & \text { if } l=B \text { egin state } \\ 0 & \text { otherwise }\end{cases}$

Is Viterbi "best"?

Viterbi finds $\pi^{*}=\arg \max _{\pi} P(x, \pi)$

Begin

Most probable (Viterbi) path goes through 5, but most probable state at 2 nd step is 6 (Viterbi is not the only interesting answer.)

Viterbi Traceback

- Above finds probability of best path
- To find the path itself, trace backward to the state k attaining the max at each stage

An HMM (unrolled)
States

Emissions/sequence positions \longrightarrow

Viterbi: best path to each state

$v_{l}(i+1)=e_{l}\left(x_{i+1}\right) \cdot \max _{k}\left(v_{k}(i) a_{k, l}\right)$

The Forward Algorithm

```
For each
state/time,
want total
probability
of all paths
leading to
it, with
given
emissions
```



```
\[
\begin{aligned}
f_{k}(i) & =P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) \\
f_{l}(i+1) & =e_{l}\left(x_{i+1}\right) \sum_{k} f_{k}(i) a_{k, l} \\
P(x) & =\sum_{\pi} P(x, \pi)=\sum_{k} f_{k}(n) a_{k, 0}
\end{aligned}
\]
```


In state k at step i ?

$$
\begin{aligned}
& P\left(x, \pi_{i}=k\right) \\
& \quad=P\left(x_{1}, \ldots, x_{i}, \pi_{i}=k\right) \cdot P\left(x_{i+1}, \ldots, x_{n} \mid x_{1}, \ldots, x_{i}, \pi_{i}=k\right) \\
& \quad=P\left(x_{1}, \ldots, x_{i}, \pi_{i}=k\right) \cdot P\left(x_{i+1}, \ldots, x_{n} \mid \pi_{i}=k\right) \\
& \quad=f_{k}(i) \cdot b_{k}(i) \\
& P\left(\pi_{i}=k \mid x\right)=\frac{P\left(x, \pi_{i}=k\right)}{P(x)}=\frac{f_{k}(i) \cdot b_{k}(i)}{P(x)}
\end{aligned}
$$

Similar: for each state/ time, want total probability of all paths from it, with given emissions, conditional on that state.

$$
\begin{aligned}
b_{k}(i) & \triangleq P\left(x_{i+1} \cdots x_{n} \mid \pi_{i}=k\right) \\
b_{k}(i) & =\sum_{l} a_{k, l} e_{l}\left(x_{i+1}\right) b_{l}(i+1) \\
b_{k}(n) & =a_{k, 0}
\end{aligned}
$$

Posterior Decoding, I

Alternative 1: what's the most likely state at step i ?

$$
\hat{\pi}_{i}=\arg \max _{k} P\left(\pi_{i}=k \mid x\right)
$$

Note: the sequence of most likely states \neq the most likely sequence of states. May not even be legal!

Begin

The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped

Figure 3.6 The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.

Posterior Decoding, II

Alternative 1: what's most likely state at step i ?

$$
\hat{\pi}_{i}=\arg \max _{k} P\left(\pi_{i}=k \mid x\right)
$$

Alternative 2: given some function $g(k)$ on states, what's its expectation. E.g., what's probability of " + " model in CpG HMM $(g(k)=1$ iff k is " + " state)?

$$
G(i \mid x)=\sum_{k} P\left(\pi_{i}=k \mid x\right) \cdot g(k)
$$

COMBI Seminar

Dr. William Noble

"Identifying remote protein homologs by network propagation"

Wednesday, November 16, 2005
1:30-2:30pm
HSB K-069

CpG Islands again

Data: 4 I human sequences, totaling 60 kbp , including 48 CpG islands of about lkbp each

- Viterbi:

Found 46 of 48
plus 121 false positives

- Posterior Decoding: same 2 false negatives plus 236 false positives

```
Post-process:
    46/48
    67 false pos
    46/48
    83 false pos
```

(merge within 500; discard < 500)

Training

- Given model topology \& training sequences, learn transition and emission probabilities
- If π known, then MLE is just frequency observed in training data

$$
\begin{align*}
& a_{k, l}=\frac{\text { count of } k \rightarrow l \text { transitions }}{\text { count of } k \rightarrow \text { anywhere transitions }} \\
& e_{k}(b)=\cdots
\end{align*}
$$

- If π hidden, then use EM : given π, estimate θ; given θ estimate π. \} 2 ways

Viterbi Training

given π, estimate θ; given θ estimate π

- Make initial estimates of parameters θ
- Find Viterbi path π for each training sequence
- Count transitions/emissions on those paths, getting new θ
- Repeat
- Not rigorously optimizing desired likelihood, but still useful \& commonly used. (Arguably good if you're doing Viterbi decoding.)

Baum-Welch Training

given θ, estimate π ensemble; then re-estimate θ

$$
\begin{aligned}
& P\left(\pi_{i}=k, \pi_{i+1}=l \mid x, \theta\right) \\
& \quad=\frac{f_{k}(i \mid \theta) a_{k, l} e_{l}\left(x_{i+1}\right) b_{l}(i+1 \mid \theta)}{P(x \mid \theta)}
\end{aligned}
$$

Estimated \# of $k \rightarrow l$ transitions $\hat{A}_{k, l}$

$$
=\sum_{\text {training seqs } x^{j}} \sum_{i} P\left(\pi_{i}=k, \pi_{i+1}=l \mid x^{j}, \theta\right)
$$

New estimate $\hat{a}_{k, l}=\frac{\hat{A}_{k, l}}{\sum_{l} \hat{A}_{k, l}}$
Emissions: similar

HMM Summary

- Viterbi - best single path (max of products)
- Forward - Sum over all paths (sum of products)
- Backward - similar
- Baum-Welch - Training via EM and forward/ backward (aka the forward/backward algorithm)
- Viterbi training - also EM, but Viterbi-based

HMMs in Action: Pfam

- Proteins fall into families, both across \& within species
- Ex: Globins, GPCRs, Zinc Fingers, Leucine zippers,...
- Identifying family is very useful, suggests function, etc.
- So, search \& alignment are both important
- One very successful approach: profile HMMs

Profile Hmm Structure

Figure 5.2 The transition structure of a profile HMM.
Mi: Match states (20 emission probabilities)
$\mathrm{l}: \quad$ Insert states (Background emission probabilities)
D_{j} : Delete states (silent - no emission) HBB_HUMAN --------VHLTPEEKSAVTALWGKV----NVEEVGAEALERERMFLSFPTTKTYFPHF MYG_PHYCA ---------VLSEGEWQLVLHVWAKVEA--DVAGHGQDILIRLFKSHPETLEKFDRF GLB3_CHITP -----------LSADQISTVQASFDKVKG------DPVGILYAVFKADPSIMAKFTQF GLB5_PETMA PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKF LGB2_LUPLU ----------GALTESQAALVKSSWEEFNA--NI PKHTHRFFILVLEIAPAAKDLFS-F

Helix DDDDDDDEEEEEEEEEEEEEEEEEEEEE DDDDDDEEEEEEEEEEEEEEEEEEEEE FFFFFFFFFFFF HBA_HUMAN \quad-DLS-----HGSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSSLHAHKLMBB_HUMAN \quad GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKL GLB33_CHITP AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVVNTFVASHKPRGGLB5_PETMA K̄̈GLTTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSFLGB2_LUPLU LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKGGLB1_GLYDI SG----AS---DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGN Consensus

Helix HBA_HUMAN HBB_HUMAN -RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYRGYG_PHYCA -HVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYHGLB3_CHITP -KIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
 LGB2_LUPLU --VADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA-GLB1_GLYDI KHIKAQYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLQS--Consensus v. f $1 . . . \cdots . \quad \mathrm{f}$. aa. k. . 1 sky
Alignment of 7 globins. A-H mark 8 alpha helices.
Consensus line: upper case $=6 / 7$, lower $=4 / 7$, dot $=3 / 7$.
Could we have a profile (aka weight matrix) w/ indels?

Silent States

- Example: chain of states, can skip some

- Problem: many parameters.
- A solution: chain of "silent" states fewer parameters
 (but less detailed control)
- Algorithms: basically the same.

How Profile HMM's used

- Search
- Forward orViterbi
- Scoring
- Log likelihood (length adjusted)
- Log odds vs background
- Z scores from either
- Alignment
- Viterbi

Likelihood vs Odds Scores

Figure 5.5 To the left the length-normalized LL score is shown as a function of sequence length. The right plot shows the same for the log-odds score.

Pfam Model Building

- Hand-curated "seed" multiple alignments
- Train profile HMM from seed alignment
- Hand-chosen score threshold(s)
- Automatic classification/alignment of all other protein sequences
- 7973 families in Rfam 18.0, 8/2005
(covers $\sim 75 \%$ of proteins)

Model building refinements

- Pseudocounts (count $=0$ common when training with 20 aa's)
$e_{i}(a)=\frac{C_{i, a}+A \cdot q_{a}}{\sum_{a} C_{i, a}+A}, \quad A \sim 20, q_{a}=$ background
$(\sim 50$ training sequences $)$
- Pseudocount "mixtures", e.g. separate pseudocount vectors for various contexts (hydrophobic regions, buried regions,...)
(~10-20 training sequences)

Model structure

- Define it as well as you can.
- In principle, you can allow all transitions and hope to learn their probabilities from data, but it usually works poorly - too many local optima

More refinements

- Weighting: may need to down weight highly similar sequences to reflect phylogenetic or sampling biases, etc.
- Match/insert assignment: Simple threshold, e.g." $>50 \%$ gap \Rightarrow insert", may be suboptimal.

Can use forward-algorithm-like dynamic programming to compute max a posteriori assignment.

Duration Modeling

- Self-loop duration: geometric $\mathrm{p}^{\mathrm{n}}(1-\mathrm{p})$

- min, then geometric

- "negative binomial"

- More general: possible (but slower)

Numerical Issues

- Products of many probabilities $\rightarrow 0$
- For Viterbi: just add logs
- For forward/backward: also work with logs, but you need sums of products, so need "log-of-sum-of-product-of-exp-of-logs", e.g., by table/interpolation
- Keep high precision and perhaps scale factor
- Working with log-odds also helps.

